Séguret AC, Stolle E, Fleites-Ayil FA, Quezada-Euán JJ, Hartfelder K, Meusemann K, Harrison MC, Soro A, Paxton RJ
Transcriptomic signatures of ageing vary in solitary and social forms of an orchid bee
Genome Biology and Evolution, 2020

[Login to Download]


Eusocial insect queens are remarkable in their ability to maximise both fecundity and longevity, thus escaping the typical trade-off between these two traits. In species exhibiting complex eusocial behaviour, several mechanisms have been proposed to underlie the remoulding of the trade-off, such as reshaping of the juvenile hormone pathway, or caste-specific susceptibility to oxidative stress. However, it remains a challenge to disentangle the molecular mechanisms underlying the remoulding of the trade-off in eusocial insects from caste-specific physiological attributes that have subsequently arisen due to their different life histories. Socially plastic species such as the orchid bee Euglossa viridissima represent excellent models to address the role of sociality per se in longevity as they allow direct comparisons of solitary and social individuals within a common genetic background. We present data on gene expression and juvenile hormone levels from young and old bees, from both solitary and social nests. We found 940 genes to be differentially expressed with age in solitary females, versus only 14 genes in social dominant females, and seven genes in subordinate females. We performed a weighted gene co-expression network analysis to further highlight candidate genes related to ageing in this species. Primary “ageing gene” candidates were related to protein synthesis, gene expression, immunity and venom production. Remarkably, juvenile hormone titres did not vary with age or social status. These results represent an important step in understanding the proximate mechanisms underlying the remodeling of the fecundity/longevity trade-off that accompanies the evolutionary transition from solitary life to eusociality.