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Abstract 

Most of the transcribed eukaryotic genomes are composed of non-coding transcripts. Among these transcripts, some are newly transcribed 
when compared to outgroups and are referred to as de no v o transcripts. De no v o transcripts ha v e been sho wn to play a major role in genomic 
inno v ations. Ho w e v er, little is known about the rates at which de no v o transcripts are gained and lost in individuals of the same species. Here, 
we address this gap and estimate the de novo transcript turnover rate with an evolutionary model. We use DNA long reads and RNA short reads 
from se v en geographically remote samples of inbred individuals of Drosophila melanogaster to detect de no v o transcripts that are gained on a 
short e v olutionary time scale. Ov erall, each sampled individual cont ains around 250 0 unspliced de no v o transcripts, with most of them being 
sample specific. We estimate that around 0.15 transcripts are gained per year, and that each gained transcript is lost at a rate around 5 × 10 −5 

per y ear. T his high turno v er of transcripts suggests frequent e xploration of ne w genomic sequences within species. These rate estimates are 
essential to comprehend the process and timescale of de no v o gene birth. 
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Introduction 

In most multicellular organisms, only a small fraction of
the genome codes for proteins ( 1 ,2 ) . Intriguingly though, a
large fraction of the non-genic genome is transcribed too, at
least occasionally, e.g. under specific conditions such as stress
or during development ( 3–5 ) . This production of transcripts
throughout the entire genome has been described as pervasive
transcription ( 6–8 ) and has been demonstrated through sev-
eral techniques ( reviewed in ( 9 ) ) . Many non-genic transcripts
perform important functions. For example, rRNA and tRNA
are indispensable constituents for the protein assembly by the
ribosome ( 10 ) . Some long non-coding RNAs ( transcripts with
> 200 nucleotides ) are involved in the regulation of splicing
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( 11 ) and transcription in general ( 12–15 ) . Among non-coding 
transcripts, some are found only in a single species or popula- 
tion without a known ortholog and can therefore be defined 

as de novo transcripts. 
Interestingly, many de novo transcripts were found to bind 

to ribosomes, indicating that part of their sequence might con- 
tain Open Reading Frames ( ORFs ) that are likely translated 

into small proteins ( 16–21 ) . This protein-coding potential of 
de novo transcripts makes them important precursors of de 
novo genes, which are coding genes that arise from previously 
non-coding genomic regions ( 22 ) . Together with the gain of an 

ORF, the gain of transcription is a fundamental feature of de 
novo gene emergence ( 23–27 ) . To understand the evolution 
22, 2023. Accepted: October 28, 2023 
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nd assess the rate of de novo gene emergence, it is therefore
ritical to quantify the evolutionary dynamics of de novo tran-
cripts ( 26 ,28–30 ) . 

The rate at which de novo transcripts are gained and lost
s still largely unknown. Studies across multiple species in-
icate high turnover, i.e. gain or loss, of long non-coding
NAs ( reviewed in ( 31 ) ) . For example, Necsulea et al. ( 32 )
stimate that around 10 000 de novo transcripts emerged and
ere fixed in primates since the split from rodents around 100
illion years ( MY ) ago, indicating a fixation rate of 100 tran-

cripts per MY. A similar analysis, based on a comparison
f transcriptomes from several rodent species, found a fixa-
ion rate of 5–10 transcripts per MY ( 33 ) . In these studies,
ranscripts were compared between species separated by large
hylogenetic distances. This provides important insight into
he transcript turnover in conserved genomic regions. How-
ver, a large amount of transcripts could not be compared be-
ause conserved genomic regions only cover a small fraction
f the genome due to genome evolution and rearrangements.
oreover, the total turnover of transcripts is estimated with-

ut an underlying evolutionary model of transcript gain and
oss. For example, the difference between the number of tran-
cripts in rat and mouse genomes can be either due to a loss
n the mouse species or a gain ( and subsequent fixation ) in the
at species, which is impossible to distinguish with the existing
ata ( 33 ) . 
Here, we aim to overcome these limitations by using a

ightly controlled setting and very short phylogenetic dis-
ances. We use deep sequencing data from seven genomes
f individual samples from a single species: Drosophila
elanogaster . These genomes were extracted from inbred

ines from different geographic locations. Because we used
amples from an almost panmictic population from the same
pecies, transcriptome comparisons are more precise than
or samples coming from different species. We assembled a
enome and a transcriptome for each homozygote DNA and
NA of the inbred lines, and used comparative genomics ap-
roaches to detect newly emerged transcripts in each sample.
e additionally determined the genomic location of the de

ovo transcripts and determined orthology with newly pro-
osed transcript-specific orthogroup definitions. The occur-
ence of transcripts in different samples allows us to infer tran-
ient dynamics of transcripts, i.e. their gain and loss rates. We
all the birth of a transcript a gain , which importantly does
ot imply its fixation in the population. It may well be, and in
act is much more likely, that a newly gained transcript will be
ost again before it is fixed in the population or species. Tran-
ient gain and loss rates were estimated using the infinitely
any genes model ( 34 ) . To test the robustness of our results,
e also applied a model that accounts for gene flow between

he samples, and a model that takes specific phylogenetic in-
ormation about the samples into account ( details in the Sup-
lementary Information ( SI ) ) . In contrast to previous studies,
hese estimates of gain and loss account for the evolutionary
urnover of transcripts between samples of a single species, in-
tead of solely the fixation ( or loss ) between different species.
n addition to these transient processes, we also estimate the
umber of transcripts that have become fixed in our sample,
n comparison to close Dipteran outgroups. Our study there-
ore provides a detailed picture of transcript turnover rates
nd evolutionary dynamics, which is important information
o understand the process of de novo gene birth. 
Materials and methods 

Sample-specific reference genomes 

RNA short reads from whole genome illumina sequencing
and DNA long reads from whole genome nanopore sequenc-
ing of seven isofemale lines of D. melanogaster were down-
loaded from NCBI ( accession PRJNA929424 ) . Among the
seven lines, six come from Europe ( Finland ( FI ) , Sweden ( SE ) ,
Denmark ( DK ) , Spain ( ES ) , Ukraine ( UA ) and Turkey ( TR ) )
and one is from Zambia ( ZI ) ( SI, Section A.1 ) . The RNA-Seq
samples were built based on total RNA from two males, two
females and one larva pooled together ( 35 ) . The DNA was
extracted from 50 individuals per inbred line. For each inbred
line, we refer to the genetic material that was extracted and
assembled from the line by a sample . The sample from Zam-
bia is considered as the ancestral outgroup as the Drosophila
melanogaster from sub-Saharan Africa diverged from the Eu-
ropean populations around 13 000 years ago ( 36 ,37 ) . 

Our model and pipeline was set up to assess transcript gain
and loss within a species. Reference genomes were assembled
for each sample by mapping the long DNA read of the sam-
ple to a reference genome of D. melanogaster , and extracting
the seven consensus genomes. This methodology has two ad-
vantages. First, it allows to compare the precise location of
transcripts between each sample, and indeed allows to use the
genome annotation to compare transcription between sam-
ples. It also made possible for us to build three definitions
of transcript orthology with more comparable genomic lo-
cation than from de novo assemblies. Second, as most stud-
ies of population genomics only use one reference genome
for a species, our method can directly be applied in this con-
text. However, the choice of not using the de novo assembled
genomes also has a cost. We suspect that part of the transcript
assemblies have been lost, e.g. due to new putative TE inser-
tions, genome duplications or inversions that can be found
frequently in Drosophila . After several control steps, we esti-
mate a maximum of 130 missed unspliced de novo transcripts
( average number of transcripts of 28,021; SI Sections A.4, A.5
and A.10 Supplementary Figures S9 and S10 ) . For each sam-
ple, DNA reads shorter than 100 bp were removed from the
long DNA reads by using Filtlong ( github rrwick / Filtlong ) .
We used the genome of D. melanogaster BDGP6.28, down-
loaded from Ensembl ( 38 ) , as a reference genome. DNA long
reads from each sample were mapped to the reference genome
using BWA-MEM ( 39 ) and a consensus genome per sample
was extracted. The resulting SAM files were converted into
BAM with samtools-view ( 40 ) . The BAM files were sorted
and indexed with samtools-sort and samtools-index. Map-
ping statistics were obtained with samtools-flagstats ( SI, Sec-
tion A.2 ) , and alignments were visualized with Integrative
Genome Viewer ( 41 ) . This procedure mapped 95–98% of
the DNA to the reference genome. For each sample, a consen-
sus genome was extracted, by using samtools-mpileup ( 42 ) ,
bcftools ( 43 ) and its function vcfutils.pl ( 44 ) ( Supplemental
Deposit ) . The genomic regions that were not covered by map-
ping were completed by the corresponding region of the ref-
erence genome of D. melanogaster . Percentages of polymor-
phisms were assessed between samples, as well as genomic
GC contents ( SI, Section A.3 ) . The nucleotide polymorphism
between samples was systematically lower than the threshold
of 2%, confirming that the DNA belongs to a single species.
This approach allowed us to detect genomic polymorphisms
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between samples, and to increase the precision for mapping
sample-specific transcripts to genomes. 

Transcriptome assembly 

RNA reads were trimmed with Trimmomatic ( 0.32 ) to
remove the adaptors A GATCGGAA GA GCA CA CGTCT-
GAA CTCCA GTCA in forward and A GATCGGAA GA GC
GTCGTGTA GGGAAA GA GTGT in reverse ( 45 ) . The quality
of reads was assessed with FastQC ( 0.11.9 ) ( 46 ) . The seven
reference genomes were indexed with HISAT2 ( 47 ) , and RNA
reads from each sample were mapped to their respective
reference genome with HISAT2 using the spliced aware
option. The resulting SAM files were converted to BAM
format with SAMtools ( 40 ) . The BAM files were sorted and
indexed. In each sample, the transcriptomes were assembled
with StringTie ( 48 ) ( Supplemental Deposit ) . The GTF files
of the assembled transcriptomes were converted into FASTA
with the FASTA2GTF module from gffRead ( 49 ) . Addition-
ally, GFF3 files of the assemblies were generated with the
script ‘gtf_to_alignment_gff3.pl’ from T ransDecoder / T rinity
( 50 ) ( Supplemental Deposit ) . For each sample, a final file
was generated including the genomic position of unspliced
transcripts, transcription orientation, and the size of the
unspliced transcripts. Transcript coverage was recorded as
Transcripts Per Million ( TPM ) . The GTF file of the reference
D. melanogaster genome was retrieved to access the position
of established genes and transposable elements, which were
annotated in the seven new reference genomes. 

We estimated if the use of genomes assembled by mapping
resulted in loss of de novo transcripts compared to de novo as-
sembly. The unmapped transcripts were retrieved in each sam-
ple with bedtools and converted into FASTA. The unmapped
transcripts were used as a query for a nucleotide BLAST search
against a database of annotated TEs for insects from Repeat-
Masker ( 51 ) . Moreover, the transcriptome assemblies gen-
erated with de novo genome assemblies were retrieved from
( 35 ) , and used as a BLAST query against the transcriptomes
generated in this manuscript. We determined the genomic po-
sitions of transcripts without hits, and the ones corresponding
to normal gene expression were annotated with bedtools. 

Detection of de no v o transcripts 

The transcriptomes of six Drosophila species ( Drosophila
simulans, Drosophila sechellia, Drosophila virilis, Drosophila
ananassae, Drosophila yakuba, Drosophila erecta ) were
downloaded from Ensembl metazoa ( http://metazoa.ensembl.
org/index.html ). These transcriptomes included all known
protein-coding transcripts extracted from male and female
Drosophila , as well as predicted coding gene transcripts.
We also downloaded the whole set of annotated non-coding
RNAs referenced for these species. To weed out as many tran-
scripts of older origin as possible, these transcriptomes were
merged and used as a target for nucleotide BLAST search
( 52 ) with all sample-specific transcripts as query. Nucleotide
BLASTs were performed with a cutoff of E = 10 

−2 , in the for-
ward direction of the target transcripts. Transcripts with no hit
were considered as preliminary de novo transcripts. Prelimi-
nary de novo transcripts were then used as query to BLASTn
search against the transcriptome of seven other Dipteran
species: Aedes aegypti, Anopheles arabiensis, Culex quique-
fasciatus, Lucilia cuprina, Musca domestica, Stomoxys calci-
trans, Teleopsis dalmanni , downloaded from Ensembl, with
a cutoff of E = 10 

−2 , in the forward direction of the tar- 
get transcripts. The remaining de novo transcripts without a 
BLAST hit were then filtered by TPM value. Transcripts with 

a TPM < 0.5 were removed from the data set to exclude low 

frequency transcripts. The remaining transcripts were consid- 
ered as de novo transcripts (Supplemental Deposit). The same 
analysis was performed again with higher thresholds of ex- 
pression of 1 and 5 TPM (data in SI, Section A.7). All of the 
follow-up analyses in the main text were performed on the de 
novo transcripts detected with a threshold of 0.5 TPM (TPM 

1 and 5 analysis results are provided in SI, Section B.4). 
The genomic positions of unspliced transcripts were re- 

trieved from the seven GTF files generated from the transcrip- 
tome assemblies, and the overlap with genomic components 
was assessed with bedtools ( 53 ) and a python code developed 

for this purpose. The transcripts were distributed in six ge- 
nomic positions: (a) ‘Overlapping with an intergenic region 

and a fragment of a gene in the identical direction’, referred 

to as ‘exon longer’, (b) ‘Overlapping with an intergenic re- 
gion only’, referred to as ‘intergenic’, (c) ‘Overlapping with 

an intergenic region and a fragment of a gene but in the oppo- 
site direction’, referred to as ‘antisense’, (d) ‘Overlapping with 

an intergenic region and a pseudogene’, referred to as ‘pseu- 
dogenic’, (e) ‘Overlapping with an intergenic region and an 

annotated non-coding RNA’, referred to as ‘ncRNA’ and (f) 
‘Inside of an intron’ referred as ‘intronic’. 

Orthogroups of de no v o transcripts 

De novo transcripts from the seven samples were searched 

for orthology relationships between them. Constructing or- 
thogroups of transcripts is more complex than construct- 
ing orthogroups of protein-coding genes. Two protein-coding 
genes are commonly grouped together into an orthogroup if 
the sequence similarity and coverage of their encoded protein 

exceeds a certain threshold, which suggests a common origin 

and a homologous function of the encoded protein. On the 
other hand, two transcripts can overlap but have arisen from 

a completely different transcription process if their transcrip- 
tion initiation and termination sites do not coincide. More- 
over, two transcripts can have similar initiation and termi- 
nation sites, but are differently spliced in different samples,
giving rise to spliced transcripts with low sequence homology.
Indeed, depending on the scientific question, transcript homol- 
ogy should be defined differently. 

To cover a large number of possible scenario, we established 

three different definitions of transcript orthology that are de- 
picted in Figure 1 : 

Definition 1: A set of transcripts are considered ortholo- 
gous if their spliced sequences share at least 70% of 
coverage between all of the members of the orthogroup,
and 75% of identity in reciprocal BLASTn. 

Definition 2: A set of transcripts are considered ortholo- 
gous if their spliced sequences share at least 70% of 
coverage between all of the members of the orthogroup 

and 75% of identity in reciprocal BLASTn, and the tran- 
scription initiation sites of all of them can be found in a 
window of 500 bp of the genome. 

Definition 3: A set of transcripts are considered ortholo- 
gous if their unspliced sequences start at a genomic po- 
sition that is within a window of 500 bp, and end in a 
window of 500 bp. 

http://metazoa.ensembl.org/index.html
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Figure 1. Transcript classifications. The figure illustrates the different de novo transcript definitions and the additional approach to categorize transcript 
nucleotides. Three samples are shown as an example. The black nucleotides represent the reference genomes (all of the exact same size), the colored 
lines at the top show the transcripts. 
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Definitions 1 and 2 compare spliced transcripts. Defini-
ion 2 , in addition to sequence similarity, takes into account
he genomic position of the transcription initiation site, thus
aking orthogroup assignment more restrictive than Defini-

ion 1 . In contrast, Definition 3 builds on the initiation and
ermination sites but does not consider sequence similarity. In
his definition, two splice variants of a single transcript would
e clustered together, independently of the sequence similarity
f the spliced variants. Therefore, if two transcripts emerge at
he same position in two samples but with different splicing
ariants, they would still be detected by this definition. 

To build the orthogroups following Definitions 1 and 2 , de
ovo transcripts from each sample were used as target for
BLASTn searches against the de novo transcripts of the six
other samples. With a 70% coverage threshold, we did not
encounter any ambiguous orthogroup definitions, e.g. when
multiple transcripts overlapped with 70%, but not for all pair-
wise comparisons. The choice of 70% coverage is to some
extent arbitrary. As a control, the same data were extracted
with a coverage threshold of 30% for Definition 1 and 90%
for Definitions 1 and 2 . The choice of threshold did not affect
the results (SI, Section B.5, data provided in the Supplemental
Deposit). A python script was used to sort the orthogroups ac-
cording to our definitions. For Definition 3 , a script was built
to directly assess the overlapping positions and nucleotides
of de novo transcripts between samples. To test the accuracy
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of our definitions, we used a set of 11 000 proto-genes from
Grandchamp et al. ( 54 ), and assigned them to orthogroups by
using the software OrthoFinder ( 55 ) and our script for Defi-
nition 1 . We found 93% of similarity between the results from
OrthoFinder and our script (OrthoFinder: 5687 orthogroups,
our script: 6124 orthogroups) (Supplemental Deposit). The
difference of 7% is due to a higher coverage threshold in our
pipeline compared to OrthoFinder. 

Additionally, we used an alternative approach to estimate
the similarity of transcripts between the samples. Instead of
comparing transcripts with each other and treating them as a
single object, we compare transcribed nucleotides. For exam-
ple, if two transcripts of 200 bp found in two samples have
an overlap of 50 bp, we will consider these 50 nucleotides as
‘ de novo transcribed nucleotides’ common to the two samples,
and the remaining 150 nucleotides as ‘ de novo transcribed nu-
cleotides’ specific to each sample. We used a python script to
classify the nucleotides of transcripts into these categories. We
refer to this approach as ‘Nucleotide similarity’. 

Evolutionary model of transient dynamics of de 

no v o transcripts 

We estimate gain and loss rates of de novo transcripts using a
model that describes transcript gain and loss dynamics along
the ancestry of the D. melanogaster samples. This evolution-
ary model is based on the infinitely many genes model , which
has been developed to describe the gain and loss dynamics
of genes in prokaryotes ( 34 ,56 ). Analogously to the infinitely
many genes model, in our model each de novo transcript arises
only once during the short evolutionary time frame that we
study. This means that any de novo transcript that is shared
between different samples must have been gained in one of the
ancestral branches common to both samples. Furthermore, in
this model de novo transcripts are selectively neutral, i.e. they
do not confer a fitness advantage or disadvantage, which is in
line with empirical evidence ( 57 ). 

De novo transcripts are gained with probability u per unit
of time and each transcript is lost with probability v per unit of
time. Here, we use a generation as a unit of time. To translate
between generations and years, we assume that the generation
time of D. melanogaster is approximately 2 weeks ( 58 ). The
total number of de novo transcripts in a sample after t units
of time, denoted by g ( t ), is then described by the following
dynamics (e.g. Eqs. (6), (7) in ( 59 )): 

dg(t ) 
dt 

= u − vg(t ) ⇒ g(t ) = 

u 

v 

(
1 − e −vt ) . (1)

The equilibrium number of de novo transcripts therefore is
u / v . 

Estimating de no v o transcript gain and loss rates 

Next, we outline how to estimate the gain and loss rates
of de novo transcripts. To this end, we compare the empiri-
cal transcript frequency spectrum to a theoretical prediction
of the frequency spectrum. The transcript frequency spec-
trum contains information about the number of transcripts
shared by a certain number of samples. We denote by D 

n =
(d 

n 
1 , ..., d 

n 
n ) the empirical transcript frequency spectrum and

by T 

n = (t n 1 , ..., t 
n 
n ) the theoretical prediction for the transcript

frequency spectrum, where n is the number of samples that are
studied. In the main text we restrict the study to the European
samples, i.e. n = 6, whereas in Section B.3 in the SI we also
include the Zambian sample in the analysis, i.e. n = 7. To es-
timate the parameters, we use a χ2 statistic to compare the 
empirical and theoretical frequency spectra, as has been done 
before ( 56 ,59 ): 

χ2 = 

n ∑ 

k =1 

(d 

n 
k − t n k ) 

2 

t n k 

. (2) 

We now outline how to compute the theoretical transcript fre- 
quency spectrum following Baumdicker et al. ( 34 ,56 ). The ge- 
nealogy of the samples is modeled by a standard coalescent.
The coalescent describes the ancestral relationship of samples 
taken from a neutrally evolving population of individuals in 

an unstructured population ( 60 ). In this setting, the genealogy 
of the sample is given by a standard coalescent and the theo- 
retical frequency spectrum can be computed analytically ( 34 ).
The European (meta-)population of D. melanogaster , despite 
showing some partition into a heterogeneous Western and a 
homogeneous Eastern cluster ( 61 ), overall has only a relatively 
weak population structure ( F ST values of 0.01–0.06 as esti- 
mated in Kapun et al. ( 62 )). In view of these previous results,
the genealogy of the European samples is then reasonably well 
described by a standard coalescent. We therefore restrict our 
analysis in the main text to these samples. The extended data 
set including the Zambian sample is analyzed in Section B.3 

in the SI and shows no substantial difference in the estimated 

rates per generation (Table B.9 in the SI). Additionally, to 

study the robustness of the parameter estimation using coa- 
lescent theory, we also explore a model where the ancestry is 
given by the estimated phylogeny of the sample ( 59 ) (SI, Sec- 
tion B.1 and Section A9 Supplementary Figures S2–S8). Using 
this alternative approach to estimate gain and loss rates, we 
do not find substantial differences to the reported estimates 
below (details in the SI, Sections B.1 and B.3). 

The frequency spectrum is given by gain and loss rates per 
generation. To transform these estimates to the time scale of 
the coalescent, we write θ = 2 N e u and ρ = 2 N e v , where N e 

denotes the effective population size. In our specific setting,
N e corresponds to the effective population size of the Euro- 
pean D. melanogaster population, here set to N e = 900 000 

as estimated in Laurent et al. ( 37 ). Then θ is the average num- 
ber of gained transcripts in 2 N e generations and ρ is the rate 
at which a transcript is lost in 2 N e generations. To transform 

these parameters to the scale of years, the estimated values are 
multiplied with the factor: no. of generations per year / (2 × ef- 
fective population size ), where we assume 26 generations per 
year, which is based on a generation time of two weeks ( 58 ). 

We denote by G 

n 
k the number of transcripts shared by k 

samples out of the n samples. Similar to Collins and Higgs 
( 59 ), we also study two transcript classes: transcripts with 

high and low turnover. To distinguish their respective rates,
we write θs , ρs for the ‘slow’ class and θf , ρf for the ‘fast’ class 
of transcripts. We drop the indices if we use only one class 
of transcripts in the following. The expected frequency spec- 
trum, denoted by E [ ·] , in its most general form is then given 

by (( 34 ), Theorem 5 extended to multiple classes) 

E 

[
G 

n 
k 

] = 

∑ 

i ∈{ s, f } 

θi 

k 
n · · · (n − k + 1) 

(n − 1 + ρi ) · · · (n − k + ρi ) 
, for 1 ≤ k < n , 

E 

[
G 

n 
n 
] = 

∑ 

i ∈{ s, f } 

θi 

n 
n · · · 1 

(n − 1 + ρi ) · · · ρi 
+ C fixed , (3) 

where C fixed denotes the number of de novo transcripts that 
are fixed in our sample, which means that they have a loss 
rate equal to zero and are found in all samples. 
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Table 1. Number of identified transcripts and de no v o transcripts in the analysed samples 

Samples DK ES FI SE TR UA ZI 
(Denmark) (Spain) (Finland) (Sweden) (Turkey) (Ukraine) (Zambia) 

# transcripts 29 675 27 901 28 212 27 022 27 357 27 786 28 198 
# de novo transcripts 2908 2842 2708 2714 2997 3024 3116 
# de novo unspliced transcripts 2344 2417 2327 2320 2529 2620 2809 

N
W  

S  

t  

o  

s  

c  

s  

s  

t  

r  

c  

t  

b
 

t  

p  

o  

(  

o  

t  

t  

b  

S

P

A  

p  

p  

/

R

S
a

T  

o  

t  

v  

S  

e
 

e  

c  

r  

9  

d  

b  

f  

u  

o  

t  

a

Table 2. Number and proportion of de no v o transcripts per sample or- 
dered by genomic region 

Position DK ES FI SE TR UA ZI 

Exon longer 307 355 352 351 362 366 396 
10.5% 12.5% 13% 13% 12% 12% 12.5% 

Intergenic 577 571 537 415 664 731 707 
20% 20% 20% 15.5% 22% 24% 22.5% 

Intronic 63 79 69 59 61 106 67 
2% 3% 2.5% 2% 2% 3.5% 2% 

ncRNA 108 111 140 115 131 112 210 
3.5% 4% 5% 4% 4.5% 4% 7% 

Pseudogene 11 12 8 10 13 10 12 
0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 

Antisense 1842 1714 1602 1764 1766 1699 1724 
63.5% 60% 59% 65% 59% 56% 55.5% 
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umerical implementation of the parameter estimation 

e used python and the integrated ‘minimize’ function from
ciPy specifying the method ‘SLSQP’ to obtain parameter es-
imates through Eq. ( 2 ). We estimated parameters using one
r two classes of transcripts plus the number of fixed tran-
cripts, i.e. we estimated either three or five parameters. We
onstrained the parameters so that the mean number of tran-
cripts per sample, the value u / v or θ/ ρ, fits the empirical ob-
ervation 

∑ 7 
i =1 id 

n 
i /n . We did this to improve convergence of

he minimization procedure by reducing the number of pa-
ameters to be estimated, which was necessary in the multi-
lass case. In addition, we conditioned the loss parameter(s)
o be between 0 and 1000 and the gain parameter(s) to be
etween 0 and 20 000. 
Initial values for the parameters in the optimization rou-

ine were chosen by fitting the mean number of transcripts
er sample and the pairwise sample differences if we fitted
ne class of transcripts, as reasoned in Baumdicker et al. ( 56 )
more details in the SI, Section B.2). When fitting two classes
f transcripts we divided the initial guess of the gain rate by
wo and set the initial gain and loss rate estimates of the slow
ranscript class to the initial values of the fast class divided
y 100. All choices of initial parameter values are stated in
ection B.2 in the SI. 

rogramming and analyses 

ll statistical analyses were performed with R ( 63 ). Data
rocessing, analyses, orthology searches and modeling were
erformed with python ( 64 ), and can be accessed at: https:
/ github.com/ AnnaGrBio/ Transcripts- gain- and- loss . 

esults 

ample-specific genome and transcriptome 

ssemblies 

he seven samples were extracted from seven inbred isolines
f Drosophila melanogaster from different geographic loca-
ions (six from Europe, one from Zambia; details are pro-
ided in the Methods and Supplementary Information (SI),
ection A.1). To this end, we compiled sample-specific refer-
nce genomes and identified de novo transcripts. 

We mapped long DNA reads of each sample to the ref-
rence genome of D. melanogaster and extracted the seven
onsensus genomes. The percentage of DNA reads that cor-
ectly mapped to the reference genome ranged from 94.3% to
7.42% (SI, Section A.2 and Supplemental Deposit: https://
oi.org/ 10.5281/ zenodo.7681079 ). The percentages of SNPs
etween the aligned genomes of the seven samples ranged
rom 0.22% to 0.58% (SI, Section A.3 Supplementary Fig-
re S1), showing very low divergence as expected for samples
f the same species. The Zambian sample diverged most from
he other samples, which is consistent with its geographic sep-
ration from the European samples. 
De no v o transcripts in samples 

RNA reads from each of the seven samples were then mapped
to their respective reference genome to build sample-specific
transcriptomes (Supplemental Deposit; SI, Section A.2). De
novo transcripts were identified in the seven samples of D.
melanogaster (details in the Methods section). In total, an av-
erage of 28,021 transcripts were found per sample (Table 1 ).
Among these, on average 2,901 transcripts per sample were
identified as de novo transcripts, as they showed no detectable
homology to transcripts in other Diptera species, and had
a required minimal expression threshold of 0.5 Transcripts
Per Million (TPM) (Table 1 ). Among these transcripts, some
arose via alternative splicing from a single unspliced precur-
sor. When merging splicing variants as a single transcript, the
average number of de novo transcripts dropped by 14.5% to
an average of 2481 per sample (Table 1 ). De novo transcripts
were also defined with higher thresholds of expression. For ex-
ample, when using 1 TPM as a minimum level of expression of
de novo transcripts, on average 871 transcripts were removed
per transcriptome (SI, Section A.6), amounting to a total of
2030 transcripts per sample. Genome assembly by DNA map-
ping can introduce a bias while assembling transcriptomes as
events of sample-specific indels and TEs are missing. Putative
bias due to TE insertions and transcript losses compared to
de novo genome assembly were assessed (SI, Sections A.4 and
A.5). We estimated that an average of 130 spliced (60 un-
spliced) de novo transcripts were lost in the assembly. 

De novo transcripts were distributed uniformly across the
chromosomes where they emerged (SI, Section A.3) and were
found in all chromosomes except the mitochondrial one. Ac-
cording to their overlap with annotated genomic elements,
we defined six different genomic positions to characterize
the transcripts (details in the Methods section). Interestingly,
de novo transcript distribution followed a similar pattern in
all seven samples (Table 2 ): Around 60% of de novo tran-
scripts overlapped with annotated genes in antisense, around
20% of the transcripts were found to be entirely intergenic,
and just very few transcripts (around 3%) emerged inside

https://github.com/AnnaGrBio/Transcripts-gain-and-loss
https://doi.org/10.5281/zenodo.7681079
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introns. Except for these intronic transcripts, transcripts from
all other genomic positions also overlapped, at least partially,
with intergenic regions, making the intergenic region a very
important pool of putative emergence of transcription initi-
ation and termination. In addition, 8–12 de novo transcripts
were consistently found to overlap with annotated pseudo-
genes in each sample. These pseudogenic transcripts were ex-
ceptionally long (11 000–150 000 nucleotides, Supplemental
Deposit). Transcripts were also observed to overlap with non-
coding RNA (ncRNA), but with an initiation site upstream or
a termination site downstream of it. Lastly, we found that de
novo transcripts contain an average of 0.37 introns (SI, Sec-
tion A.7 Supplementary Table A.1). 

Orthogroups of de no v o transcripts 

The number of identified orthogroups differed between the
definitions (Figure 2 ). Definition 1 gave the smallest number
of orthogroups (9945), Definition 2 clustered transcripts into
11 305 orthogroups, Definition 3 into 12 223 orthogroups.
Definition 1 is solely based on transcript similarity and cov-
erage and, contrarily to Definition 2 , does not take into ac-
count the initiation position. Indeed, the fact that Definition
1 defines fewer orthogroups suggests that around 2000 tran-
scripts overlap but have a substantially different initiation site.
Definition 3 characterizes orthogroups only based on the ini-
tiation and termination position of the unspliced transcripts,
without considering splicing, similarity or coverage. The fact
that this definition gave the highest number of orthogroups,
combined with results from Definitions 1 and 2 , suggests that
de novo transcripts diverge by their initiation and termination
location even though their sequences overlap. In other words,
transcripts tend to emerge in nearby genomic regions, which
makes them overlap, but at different transcription initiation
sites, as they diverge rather in their initiation position than
in their coverage. Interestingly, when comparing the number
of transcripts shared by samples, the three definitions showed
the same frequency spectra (Figure 2 ). Most orthogroups con-
tain only one de novo transcript found in a single sample. The
numbers of transcripts shared between samples decrease with
the number of samples. This decrease is also visible for each
genomic position of transcripts. As Definition 1 is the least
restrictive, it clusters more transcripts from different samples
together. Accordingly, the number of transcripts shared by 2–
7 samples was higher in Definition 1 than in Definitions 2 and
3 . The relative amount of transcripts specific to a single sam-
ple represented 53% of the total amount of orthogroups with
Definition 1 , 66% with Definition 2 and 72% with Definition
3 . The results from the alternative approach, which counts the
number of nucleotides shared between the different samples,
cannot be compared quantitatively to the three definitions as
transcripts are not considered per se . Still, the frequency spec-
trum shows the same pattern as found by the three definitions.

The same definitions were used to cluster de novo tran-
scripts into orthogroups by using de novo transcripts whose
expression level was larger than 1 TPM (SI, Section A.8 Sup-
plementary Table A2 to A8). The number of orthogroups were
expectedly lower but the trend was the same as observed with
the expression threshold of 0.5 TPM. 

Gain and loss rates of de no v o transcripts 

We estimated the gain and loss rates for the transcript fre-
quency spectra obtained by Definitions 2 and 3 (Figure 2 ). The
parameter estimation relies on comparison of a theoretically 
calculated transcript frequency spectrum and the empirically 
observed one (details in the Methods section). The estimated 

parameters are summarized in Table 3 , estimated raw param- 
eters for all data sets and models are stated in SI, Section B.7 

Supplementary Table B.14. 
We explored two different models that differed in the num- 

ber of transcript classes. In the simpler model, we consider a 
single class of transcripts, i.e. all transcripts are gained and lost 
at the same rates. The more complex model distinguishes be- 
tween two classes of transcripts, a class with a high turnover 
rate, i.e. fast gain and loss, and a class with a (relatively) 
lower turnover rate, i.e. slow gain and loss. Overall, the two 

transcript class model fits the observed frequency distribution 

slightly better, but the differences are small (Figure 3 ). We 
therefore only discuss the estimates from the one transcript 
class model. 

We find high gain and loss rates of transcripts, indicat- 
ing high (transient) turnover dynamics of de novo transcripts.
We estimate that between 0.13 and 0.17 new transcripts are 
gained per year, depending on the definition of transcript or- 
thology and the number of transcript classes. Every single 
transcript is lost at a rate between 5 × 10 

−5 and 6.3 × 10 

−5 

per year, i.e. the expected life span of a transcript is approx- 
imately 20,000 years. We note that the gain and loss rates 
are estimated in rates per generation and need to be trans- 
formed to the per year scale (details in the Methods). This 
parameter transformation strongly depends on the assump- 
tions of the generation time, here assumed to be two weeks 
( 58 ), and the effective population size of the European 

D. melanogaster population, here set to 900 000 ( 37 ). Un- 
certainty in these parameters can strongly impact the per year 
rate estimates in Table 3 . For example, effective population 

size estimates range from ∼155 000 ( 65 ) to ∼3 100 000 ( 66 ).
Lastly, we also estimate the number of transcripts that have 

become fixed in our data set. By fixed transcripts, we describe 
transcripts with the following properties: i) They are found in 

all samples, which means that they have been gained in the 
most recent common ancestor of the samples, and ii) they are 
modeled with a loss rate equal to zero. Adding this type of 
transcript aids the parameter estimation by adding a degree of 
freedom to better describe the transcripts shared by all sam- 
ples. We estimate 91–95 fixed transcripts in the one-transcript- 
class model and 50–52 fixed transcripts in the two-transcript- 
classes model. We emphasize that the number of fixed tran- 
scripts is sample-dependent. Moreover, these transcripts are 
not necessarily fixed in the species, but may simply be found 

in all of the samples by chance. Increasing the number of sam- 
ples will likely reduce the number of estimated fixed tran- 
scripts because a newly added sample always has a positive 
probability of losing one of the transcripts that is shared by 
all the other samples. For example, by including the Zambian 

sample, which is an outgroup to the European samples, into 

the data set, the estimated number of fixed transcripts reduces 
to 71–75, compared to the estimated 91–95 fixed transcripts 
within the European samples (Supplementary Table B.9 in 

the SI). 

Transcript gain and loss rates per genomic region 

We estimate the gain and loss rates separately for different 
genomic regions, using the same methodology as outlined in 

the previous section. Table 4 shows the estimated parameters 
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Figure 2. De no v o transcripts shared by samples. The graphs from Definitions 1, 2 and 3 show the number of transcripts shared by the number of 
samples they are found in. The graph titled ‘Nucleotides shared’ shows the number of nucleotides transcribed in common in one to se v en samples. T he 
x -axes correspond to the number of samples sharing a transcript, the y -axes show the number of transcripts. The six graphs at the bottom show the 
number of transcripts per genomic position shared between the samples. Each color represents a different definition: Definition 1 in gray, Definition 2 in 
blue, Definition 3 in y ello w. 
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Table 3. Estimated de no v o transcript gain and loss rates. The gain and 
loss rates are measured as rates per year, the parameter C fixed estimates 
the number of fixed transcripts in the sample 

Model Gain Loss 
Gain 
(slow) Loss (slow) C fixed 

Definition 2 
1 transcript class 0.13 5 × 10 −5 – – 91 
2 transcript classes 0.15 2 × 10 −4 0.06 3.1 × 10 −5 50 

Definition 3 
1 transcript class 0.17 6.3 × 10 −5 – – 95 
2 transcript classes 0.28 2.6 × 10 −4 0.05 3 × 10 −5 52 
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(rates per year) for the one-transcript-class model. We find that
the loss rates of transcripts are estimated between 2.6 × 10 

−5

and 5.5 × 10 

−5 across all genomic regions, which is consistent
with the estimate from the aggregated data (Table 3 ). The gain
rates, in contrast, differ more strongly over the genomic re-
gions. One reason for this large variation might be that the ge-
nomic regions do not cover equal proportions of the genome.
For example, intergenic regions cover around 68% of the D.
melanogaster genome, while we approximate that the regions
where transcripts overlap with non-coding RNAs only cover
around 9% of the genome (details about the estimation of pro-
portions are provided in the SI, Section B.5). Larger genomic
coverage should therefore also result in a larger gain rate esti-
mate because there are more positions where a de novo tran-
script could arise. To compare the gain rates across genomic
regions in a meaningful way, we therefore normalize them ac-
cording to their respective coverage. Strikingly, we find that
the normalized gain rate of antisense transcripts is almost ten
times larger than for all the other regions. Transcript gain in
intronic regions is the lowest. 

The estimated parameters from the alternative models and
data sets are stated in SI, Supplementary Table B.12. The gen-
eral pattern remains the same, i.e. we find consistent loss rates
across regions, and the lowest gain rate in intronic and the
highest gain rate in antisense regions. 

Discussion 

De no v o transcripts in Drosophila melanogaster 

We investigated the emergence of de novo transcripts by us-
ing a unique setup based on samples of D. melanogaster from
different geographic locations. In each sample, between 2708
and 3116 transcripts with an expression level higher than
0.5 TPM showed no homology to any annotated transcript
in Diptera and outgroup species, suggesting their de novo
emergence (1921 to 2156 with expression level higher than 1
TPM). Some of these detected de novo transcripts are the re-
sult of alternative splicing, reducing the amount of unspliced
de novo transcripts to 2327–2809 transcripts per sample. In
total, their cumulative length covers 4–6% of the genome. We
find that the gain of a transient de novo transcript is a fre-
quent event. Previous studies already detected high amounts
of new transcripts when comparing species or expression in
different organs of the same species. For example, Brown et al.
( 67 ) identified 1875 new candidate long non-coding RNAs
(lncRNAs) producing 3085 transcripts in D. melanogaster ,
with 2990 of them having no overlap with protein-coding
genes of D. melanogaster or known lncRNAs in outgroup
species. Huang et al. ( 68 ) determined that 4.5 to 6.7% of
transcripts detected in the transcriptome of D. melanogaster 
were not annotated in FlyBase, which amounted to 1669 tran- 
scripts derived from intronic regions and 2192 from inter- 
genic regions. We detected fewer de novo transcripts in D.
melanogaster samples than these previous studies. However,
the RNA of each of our samples included fewer developmental 
stages and full body transcripts compared to the other stud- 
ies, which used tissues from larval, pupal and adult animals.
In particular, we detected many fewer transcripts in intronic 
regions than the two previous studies, which suggests that in- 
tronic de novo transcripts are specific to some developmental 
stages or tissues. Moreover, sample-specific genomes were as- 
sembled by mapping. Therefore, any transcript arising from a 
genome rearrangement may have been lost in our study. How- 
ever, such an event is unlikely as de novo genomes did not 
show major rearrangements ( 35 ). Our methodology allowed 

us to remove all transcripts that correspond to annotated 

genes from our dataset, confirming that they do not encode for 
Drosophila -annotated proteins. Moreover, we removed any 
transcript that corresponded to annotated lncRNA from any 
Drosophila species or to transposable elements. However, the 
data repositories of lncRNAs are likely incomplete, due to 

their highly variable expression in cells, tissues or individuals.
We therefore cannot rule out that some de novo transcripts 
correspond to not yet annotated lncRNAs. Still, as the tran- 
scriptomes of the seven samples were extracted under the same 
conditions in a tightly controlled setting, the lack of expres- 
sion of de novo transcripts in some samples suggests the ab- 
sence of an established lncRNA, and thus indeed the de novo 

emergence of these transcripts. 
Strikingly, we find that in all samples most de novo tran- 

scripts (around 60%) overlap with coding genes in oppo- 
site direction. These antisense transcripts are a common phe- 
nomenon in genomes ( 69 ). Their functions and mechanisms 
of emergence were reviewed in Barman et al. ( 70 ). For exam- 
ple, antisense transcription plays an important role in gene ex- 
pression regulation, as antisense transcripts can hybridize with 

forward transcripts and prevent translation of the forward- 
transcribed transcript ( 71 ). Despite their importance in gene 
regulation, de novo emergence of antisense transcripts has not 
yet been intensively studied. Our results suggest that de novo 

emergence of antisense transcripts is common. 

High estimated rates of gain and loss suggest high 

transcript turnover 

To understand and quantify the transient dynamics of de novo 

transcripts, we rely on the transcript frequency spectrum (Fig- 
ure 3 ), i.e. the numbers of transcripts shared between sam- 
ples. The clustering of de novo transcripts into orthogroups 
forms the basis of this frequency spectrum. We distributed 

transcripts into orthogroups according to three new defini- 
tions that are based on different interpretations of orthology.
All definitions resulted in similar patterns of transcripts shared 

across samples (Fig 2 ). Strikingly, most de novo transcripts 
were specific to a single sample. This indicates a high tran- 
script gain rate, which in turn suggests a high turnover of 
transcripts. We find this high rate of transcript gain to be in- 
dependent of the specific TPM cutoff (main text: 0.5 TPM; 
SI, Section B.4 Supplementary Tables B9 to B11: 1 TPM and 

5 TPM) and independent of the sequence similarity thresh- 
old used for the orthogroup definitions (main text: 70%; SI,
Section B.5 Supplementary Table B12: 90%). This result is of 
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Figure 3. Empirical and estimated transcript frequency spectra. The histograms show the empirical de novo transcript frequencies obtained with 
Definition 2 (left) and Definition 3 (right) from the European samples only. Symbols show the theoretical frequency spectrum computed with the 
parameters estimated by the different models: black triangle – 2 transcript classes; red triangle (upside down) – 1 transcript class. 

Table 4. Estimated de no v o transcript gain and loss rates per genomic region 

Definition 2 Definition 3 

Genomic region Gain Gain norm 

Loss C fixed Gain Gain norm 

Loss C fixed 

Exon longer 7.7 × 10 − 3 0.05 2.6 × 10 −5 24 0.01 0.09 3.2 × 10 − 5 31 
Intergenic 0.02 0.03 3.9 × 10 −5 1 0.03 0.05 4.4 × 10 − 5 3 
Intronic 3.9 × 10 − 3 0.02 5.5 × 10 −5 0 8.8 × 10 −3 0.04 4.5 × 10 − 5 2 
ncRNA 3 × 10 − 4 0.04 3.6 × 10 −5 6 9.1 × 10 −3 0.1 3.8 × 10 − 5 8 
Antisense 0.05 0.35 3.4 × 10 −5 2 0.07 0.45 4 × 10 − 5 6 

We have used the one-transcript-class model to estimate the gain and loss rates of transcripts and the fixed number of transcripts per genomic region. Parameter 
estimates of gain and loss rates are per year. To compare the gain rates between different genomic regions in a meaningful way, we have normalized the gain 
rates, denoted by gainnorm, according to the coverage of the region in the genome. Normalization is done by rescaling the gain rates by their respective 
estimated coverage (details in SI, Section B.6 Supplementary Table B.13). 
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ajor importance because it suggests that initiation of tran-
cription is easily gained within a species, but at different
enomic locations in individuals. This observation should
e taken into account when comparing transcript gains and
osses between species, as the choice of the transcriptome rep-
esentative of the species will impact the results of the com-
arison. 
We quantified the transient dynamics, i.e. gain and loss

ates, of de novo transcripts based on sequencing data from
even samples of D. melanogaster . We emphasize that most of
he transcripts in our data are not fixed in D. melanogaster , i.e.
e do not find them in all samples. Rather, the presence and

bsence pattern of transcripts throughout the different sam-
les allows us to study the transient state where transcripts
re in the process to fixation or extinction within the species.
he term gain therefore refers to the emergence of a new tran-
cript, but not to its fixation; similarly the term loss refers to
he loss of a transcript within a sample, but not necessarily to
ts overall extinction on the species level. Additionally, we esti-
ate the number of fixed transcripts in our sample, which are

ound in all samples and have an assumed loss rate equal to
ero. To quantify the transient dynamics, we used the infinitely
any genes model ( 34 ), and adapted it to the notion of tran-

cripts. One potential limitation of this model is that it does
ot account for gene flow between samples. However, using
n extension of the infinitely many genes model that accounts
or horizontal gene transfer ( 72 ), the rate of gene flow in our
data set is estimated to be zero (details in SI, Section B.8 Sup-
plementary Table B.15). In the context of bacteria, yet another
model had been proposed, which estimates gain and loss rates
using a fixed phylogenetic tree instead of a coalescent, and
which assumes that genes can be gained from an unobserved
population or the environment ( 73 ). While this might be rea-
sonable for bacteria, which can incorporate genes from the en-
vironment, we assume that in our case explicitly accounting
for population structure based on the geographic proximity
of the samples would be more sensible. 

Independent of the definition, we find a high turnover rate
of transcripts, i.e. high gain and loss rates. Using the data from
Definitions 2 and 3 , approximately 0.15 transcripts are gained
per year. A transcript is lost at a rate of ∼10 

−5 −10 

−4 per year,
which is consistent across all investigated data sets. 

We find fewer orthogroups with Definition 2 than with
Definition 3 , suggesting that new transcripts diverge rather
in their initiation and termination sites than in their cover-
age. The high turnover of transcripts could be influenced by
mutations in transcription factor motifs, strengthening or de-
creasing their ability to bind to the transcription machinery.
This would be consistent with findings in previous studies
( 9 , 74 , 75 ). For example, high turnover of initiation sites for
transcription has been observed between human and mice
( 76 ), together with high mutation or rearrangements in up-
stream regulatory regions ( 77–84 ). In Bacillus subtilis , 174
transcripts were found to have a new termination signal in
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the genome, further down than the original termination site,
which had been inactivated ( 85 ). In fact, several studies in
yeast and other eukaryotes demonstrated that modifications
in transcription termination were involved in the abundant
production of non-genic transcripts ( 86–88 ). To maintain con-
stant transcript numbers over time, the large gain rate of tran-
scription is countered by different transcript removal mecha-
nisms. These mechanisms can be complementary and occur at
different levels ( 9 , 89 , 90 ). For example, de novo transcripts can
be directly degraded in the nucleus or the cytoplasm, as has
been shown in Saccharomyces cerevisiae ( 91–93 ). In addition,
transposable elements alter the landscape of pervasive tran-
scription by pausing or terminating neighbouring transcrip-
tion ( 94 ). 

Rates of de no v o transcript gain vary across 

genomic regions 

We classified de novo transcripts according to their genomic
position. The proportion of transcripts found per genomic re-
gion was similar for all samples (Table 2 ). The loss rate of
de novo transcripts was consistent across all genomic regions,
which suggests that random mutations are driving the loss of
transcription. This is further corroborated by the similar loss
rate found in the data sets with the 1 TPM and 5 TPM thresh-
olds. In contrast, we found large differences between the gain
rates in the different genomic regions (Table 4 ). The normal-
ized gain rate was highest for de novo transcripts overlapping
with genes in the opposite direction of their transcription (an-
tisense). This finding is in line with studies showing that an-
tisense transcription is frequent and is a major driver of evo-
lution as it regulates gene expression ( 69 ,95 ). Moreover, an-
tisense transcripts can also be involved in diseases ( 70 ), and
their frequent gain and loss could be adaptive in samples that
were collected from different geographic locations, and thus
possibly different environments. We also consistently find that
the rate of transcript gain in intronic regions is lowest. Gain of
a new intronic transcript might require both the acquisition of
an initiation and a termination site inside an intron, contrar-
ily to the other transcript types, which can potentially exploit
an already existing site at one of the two ends. Additionally,
the gain of these two elements has to occur in a region lim-
ited in size (the intron), which probably explains why gain of
transcription inside an intron is less expected. 

More unexpectedly, the gain of transcripts in intergenic re-
gions and of transcripts overlapping with a gene occurs at a
similar rate. We would have expected that transcripts emerg-
ing in overlap with a coding region have a higher chance to
be quickly removed by purifying selection ( 96 ). Transcripts
overlapping with existing genes could, however, have a higher
chance to acquire a coding function and by that become part
of the gene splicing process, which might also explain the rel-
atively high number of estimated fixed transcripts in this ge-
nomic region. These two counteracting processes, purifying
selection versus potentially beneficial coding function, could
explain why the overall transcript gain rate in regions over-
lapping with genes in sense is comparable to the suspected
selectively neutral dynamics in intergenic regions. 

Conclusion and future prospects 

To summarize, we have estimated the transient dynamics of
de novo transcripts in D. melanogaster . These estimates show
that de novo transcripts are gained and lost at high rates inside 
this species. Gain rates vary across the genome, being highest 
in regions overlapping with genes in antisense and lowest in 

intronic regions. In contrast, loss rates of de novo transcripts 
are found to be similar across the genome. 

Larger data sets will help to refine or confirm the general- 
ity of our findings. Including more samples, possibly from the 
same geographic regions or even the same generated isolines,
would shed more light on the randomness and transience of 
de novo transcript gain and loss. Moreover, including genomes 
from several species that follow a phylogenetic gradient would 

enable modeling transcript dynamics beyond species bound- 
aries. The time of divergence between species would provide 
insight into the fixation rates of transcripts in species under 
changing environmental conditions and after going through 

population bottlenecks. Finally, with the continuous imple- 
mentation of RNA data bases and whole genome sequencing,
further studies could increase the number of samples and by 
that the comparisons to detect de novo transcripts. 

In the broader context of genome evolution, our results are 
a first step to a more mechanistic and less phenomenological 
treatment and understanding of de novo transcript, and con- 
sequently de novo gene, evolutionary dynamics. 

Data availability 

The genomic DNA and RNA sequences are available un- 
der NCBI Bioproject PRJNA929424. Additionally, the files 
containing processed data is available in the Zenodo archive 
https:// doi.org/ 10.5281/ zenodo.7681079 , and is referred in 

the main text as ‘Supplemental Deposit’. The archive contains,
for each sample, the polymorphic genomes, transcriptome as- 
semblies, de novo transcripts, orthology comparison results,
orthogroups according to the 4 classifications, and protein 

alignments for the phylogenetic reconstruction of the sam- 
ples in the Supplementary Information. Supplemental figures,
information, analyses and models are found in the Supple- 
mentary Information. All programs are stored in Zenodo at 
https:// doi.org/ 10.5281/ zenodo.7681078 . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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