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Abstract

De novo genes emerge from previously noncoding stretches of the genome. Their encoded de novo proteins are generally 
expected to be similar to random sequences and, accordingly, with no stable tertiary fold and high predicted disorder. 
However, structural properties of de novo proteins and whether they differ during the stages of emergence and fixation 
have not been studied in depth and rely heavily on predictions. Here we generated a library of short human putative de 
novo proteins of varying lengths and ages and sorted the candidates according to their structural compactness and disorder 
propensity. Using Förster resonance energy transfer combined with Fluorescence-activated cell sorting, we were able to 
screen the library for most compact protein structures, as well as most elongated and flexible structures. We find that com
pact de novo proteins are on average slightly shorter and contain lower predicted disorder than less compact ones. The pre
dicted structures for most and least compact de novo proteins correspond to expectations in that they contain more 
secondary structure content or higher disorder content, respectively. Our experiments indicate that older de novo proteins 
have higher compactness and structural propensity compared with young ones. We discuss possible evolutionary scenarios 
and their implications underlying the age-dependencies of compactness and structural content of putative de novo proteins.

Significance
Akin to random sequences, proteins that emerge de novo from noncoding DNA are usually predicted to be highly dis
ordered as they inherit no structure from their ancestor, unlike proteins evolving through duplication. Most studies 
to-date have relied on computational prediction of the structural properties of de novo proteins. Here, we show experi
mentally that, while most of our putative human de novo proteins are highly disordered, some contain propensity for 
structure and globularity, seen most clearly in the oldest de novo proteins in our dataset. With that we aim to lay the 
groundwork for experimental verification of hypotheses regarding the structural evolution of de novo proteins.
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Graphical Abstract

Introduction
De novo protein emergence provides the genome with 
great innovative potential to explore the hitherto unex
plored sequence space (Tautz and Domazet-Lošo 2011; 
McLysaght and Hurst 2016; Weisman and Eddy 2017; 
Rödelsperger et al. 2019; Van Oss and Carvunis 2019). In 
comparison to other known mechanisms of protein emer
gence that rely on recycling of conserved genetic elements, 
like duplication (Ohno 1970; Sikosek and Bornberg-Bauer 
2010) or gene fusion (Dohmen et al. 2020), de novo genes 
emerge from noncoding regions of the genome 
(Bornberg-Bauer et al. 2021). De novo proteins are shorter 
on average than new proteins emerging through duplica
tion (Montañés et al. 2023) and have low expression that 
is often restricted to specific tissues or conditions (Wu 
and Knudson 2018; Heames et al. 2020; Schmitz et al. 
2020). Therefore, many potential de novo proteins are 
overlooked by classical annotation methods focusing on 
longer and highly expressed proteins. Due to the same chal
lenges, short open reading frames (sORFs) and their micro
proteins remain understudied. Recently, sORFs and 
microproteins have gained attention (Pueyo et al. 2016) 
and are proposed to serve as a reservoir for de novo pro
teins (Vakirlis et al. 2022; Sandmann et al. 2023). 
Additional de novo proteins are continuously detected 
across many species, including, e.g. several plants (Zhang 
et al. 2019; Marsch-Martínez et al. 2022), fruit flies 
(Heames et al. 2020), and humans (Guerzoni and 
McLysaght 2016; Sandmann et al. 2023). Many of these 
studies focus on detection and functional characterization 
of the de novo proteins, but few report structural character
ization (Bungard et al. 2017; Her et al. 2019; Lange et al. 

2020; Matsuo et al. 2021). Computationally, de novo pro
teins are mostly predicted to contain high structural dis
order (Wilson et al. 2017; Dowling et al. 2020; Aubel 
et al. 2023; Peng and Zhao 2024). They may assume molten 
globule-like structures containing secondary structure ele
ments but lacking the stable tertiary fold of a globular pro
tein (Bungard et al. 2017; Lange et al. 2020). Similarly, 
random-sequence proteins have been shown to contain 
secondary structure elements, but are best tolerated in 
vivo when they have a higher amount of disordered regions 
(Tretyachenko et al. 2017).

In a previous study comparing de novo protein candi
dates to random-sequence proteins (Heames et al. 2023), 
we showed experimentally that both sets of proteins are 
on average highly similar to each other concerning their 
solubility, interaction with chaperones and protease resist
ance. However, the putative de novo proteins showed 
slightly higher solubility, yet at the same time higher de
gradability when exposed to a bacterial Lon protease 
(Niwa et al. 2019) than their random-sequence counter
parts. Their higher solubility combined with more degrad
ation by the protease points to overall higher disorder 
content of de novo proteins compared with the random- 
sequence proteins. Corresponding to the experimental 
findings on both de novo and random proteins, solubility 
and prevention against aggregation seem to be the main 
bottleneck for newly emerging proteins to avoid purging 
by natural selection (Ángyán et al. 2012; Agozzino and 
Dill 2018; Monti et al. 2021; Vakirlis et al. 2022).

Here, we aim to select candidate de novo proteins origin
ating from sORFs with high potential for compactness, and 
accordingly with a lower amount of disorder and increasing 
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potential for folding. Our goal is to investigate whether and 
how frequently compact sORFs have the propensity to form 
secondary structure elements and potentially stable folds. 
We apply a high-throughput assay based on fluorescent- 
activated cell sorting (FACS) of Escherichia coli cells to select 
top candidates from a library of 3,750 putative de novo pro
teins (Fig. 1a–b). The putative de novo sORFs in the library 
are of differing lengths between 32 and 59 amino acids 
(aa). Compared to the amino acid frequencies reported in 
UniProt (EMBL-EBI 2024), the library sequences contain sev
eral more disorder promoting amino acids (Uversky 2013), 
like proline and serine, but also slightly more cysteine and 
tryptophan (supplementary material figure S1a–b, 
Supplementary Material online). All putative de novo 
sORF proteins show evidence of translation in different 
ribosome sequencing (ribo-seq) experiments (Olexiouk 
et al. 2016). The design of the assay, based on previous 
work by Philipps et al. (2003), makes use of Förster reson
ance energy transfer (FRET) between two fluorescent pro
teins with spectral overlap (Förster 1948). Efficiency of 
the transfer is inversely dependent on the distance of the 
fluorescent proteins, thereby offering a way to measure 
proximity of two molecules or to study intramolecular 
conformation states. By making use of the latter, we aimed 
to develop a high-throughput assay capable of screening 
for compact protein variants. In this assay, the library target 
protein is expressed in fusion with the FRET pair, serving as a 
linker between the fluorophores. The yellow fluorescent 
protein (mVenus) serving as an acceptor is fused to the 
C-terminus of the target protein, while the donor cyan 
fluorescent protein (mTurquoise2) is at the N-terminus of 
the target protein (Fig. 1c). In case the two fluorescent pro
teins are connected by a stable and compact target protein, 
which places them within the FRET radius, the energy trans
fer can happen. Increased FRET signal reflects N- to 
C-terminal distance or persistence length of the linker pro
teins and can be interpreted as a measure of compactness 
(Krishna and Englander 2005; van Rosmalen et al. 2017). 
Target proteins that are more flexible and do not provide 
a structurally stable link between the two fluorescent pro
teins, result in E. coli cells without FRET signal. The cells ex
pressing the target protein with fluorescent proteins can be 
sorted accordingly using FACS. Thereby, we can select sin
gle protein sequences that have a low N- to C-terminal dis
tance, are more compact and less disordered (Fig. 1d).

Results
The library of 3,750 putative de novo sORF proteins (DN) 
and corresponding random- sequence proteins (R) ranging 
from 32 to 59 amino acids were amplified from an oligo
nucleotide library synthesis (OLS) pool. DN and R libraries 
were separated in PCR by using library-specific primers 

and then sequenced using Illumina NGS. The PCR product 
of both libraries covered 90% (3365 DN and 3,367 R) of 
the initial libraries (supplementary material figure S2, 
Supplementary Material online). Library sequences of DN 
and R were then cloned into pETMF plasmid, placing the 
single library sORF proteins as a linker between two fluores
cent proteins. Upon expression in E. coli cells the library pro
teins are tagged with mTurquoise2 at the N-terminus and 
mVenus at the C-terminus resulting in a fusion protein 
(Fig. 1c). More compact linker proteins lead to a stronger 
FRET signal between the two fluorescent tags and can be 
sorted using FACS on the E. coli expressing the fusion pro
tein. Each library was sorted into FRET-positive and 
FRET-negative categories based on controls (GS-linkers 
and previously characterized proteins of the same length, 
see Table 1) in two sequential rounds starting from the pre
sorted samples. After completing all FACS rounds, cells 
from the different samples were recovered separately, bar
coded, and their DNA sequenced using NGS. This Figure 
was created with BioRender.

Fluorescence Lifetime Measurements

We chose mTurquoise2 and mVenus as a FRET pair, as both 
of these fluorescent proteins express well in E.coli, possess 
self-association preventing mutations, exhibit high bright
ness and, in the case of mTurquoise2, long fluorescence 
lifetime (Bajar et al. 2016). First, we generated a cassette 
consisting of the FRET pair genes separated by a Golden 
Gate assembly compatible cloning site and inserted the cas
sette into the backbone of the pET24a(+) vector. The result
ing vector pETMF allows for T7 promoter controlled 
expression of the large fusion protein, where the protein 
of interest is connected to the FRET pair by one glycine–ser
ine repeat and glutamate and leucine residues as part of the 
cloning process. To validate the performance of our com
pactness assay, we selected several well-characterized 
E.coli proteins with different properties and generated con
structs with the FRET pair separated by GGS repeat linkers 
of various lengths (Table 1). Intensity based FRET efficiency 
measurements require purified samples of known concen
trations. Therefore, we used time correlated single photon 
counting (TCSPC) to obtain a fluorescence lifetime of the 
donor molecule, which can be used to calculate FRET effi
ciency in vivo. Fluorescence lifetime is a property inherent 
to every fluorescent molecule, and it defines the time it 
takes the molecule to return to its ground state upon exci
tation. In the presence of a FRET acceptor, the lifetime of 
the donor shortens and by comparing it to the lifetime of 
the donor alone the FRET efficiency can be calculated. 
After exponential curve fitting, we deconvoluted the fluor
escence lifetime of the donor alone and fusion protein con
structs. The fluorescence lifetime of the donor, 3.79 ns, 
slightly deviates from lifetime of 4.0 ns reported in a 
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previous study (Goedhart et al. 2012), which can be attrib
uted to fluorescence quenching of the cellular environment 
in bacteria. Nevertheless, we observed an increase in life
time with increasing length of the linker in case of 
GS-linker controls. The various measured lifetimes for se
lected E.coli proteins corresponded to their overall flexibility 

and structure content, albeit invariant of the length 
(Table 1).

Flow Cytometry

Following the fluorescence lifetime measurements, we con
tinued with flow cytometry experiments to verify that 

FIG. 1.—Workflow: a) We selected 3,750 de novo emerged human sequences from the sORFs database and generated a library of comparable random 
sequences. Protein structure properties were predicted computationally. After ordering the libraries as oligonucleotides they were cloned into the pETMF plas
mid and transformed into E. coli for the FRET-FACS assay. b) The FACS was performed in two sequential rounds for both libraries separately. Presorted cells 
containing single library sequences were sorted into FRET-positive (on the left in green) and FRET-negative (on the right in red) samples. Samples with ∗ were 
recovered, sent for next-generation sequencing (NGS) and used for enrichment analysis. c) The library sORF proteins (gray) are tagged with fluorescent proteins 
(FP) mVenus (acceptor FP in yellow) and mTurquoise2 (donor FP in blue) on the termini with GGS spacers. Compact library sORF proteins place the fluorescent 
proteins in close proximity and are expected to cause FRET. Disordered or fibrillar library proteins are expected to be FRET-negative. d) The presorted samples 
contain all library protein structures. The first round is expected to result in separation of compact and disordered structures, which becomes more pronounced 
in the second round. The FRET-negative proteins should have an increased N- to C-terminal distance and disorder, while the FRET-positive proteins show in
creased compactness and folding. Made with BioRender.
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spectroscopic results correspond to the cytometric ones. 
The nature of our assay, being an intramolecular FRET sen
sor, does not require the tedious control process as in the 
case of detecting protein–protein interactions by FRET 
(Banning et al. 2010). Nevertheless, we employed three 
channels: donor excitation and emission (donor channel), 
acceptor excitation and emission (acceptor channel), donor 
excitation and acceptor emission (FRET channel). First, we 
used donor and acceptor channels to gate a population 
positive for both fluorophores (P1), suggesting presence 
of a complete fusion protein. To robustly detect the FRET 
signal, we derived a parameter of ratio between the FRET 
channel and the donor channel (FRET ratio). We observed 
that the FRET ratio of the control proteins were in line 
with the FRET efficiencies obtained from fluorescence life
time measurements (supplementary material figure S5, 
Supplementary Material online). We then proceeded to 
sort the DN and R library samples. First, we gated approxi
mately 30% of the events exhibiting maximum fluores
cence for the donor and the acceptor channel (P1 in 
Fig. 2a). Apart from the main double fluorescent popula
tion, a smaller population showing only donor signal ap
peared, which can be attributed to spurious stop codons 
or variants difficult to translate. After projecting the P1 
population to the FRET ratio histogram, we started with ex
cluding the top 3% of the population, as the cells showing 
extreme fluorescence have lower viability. FRET-negative 
and FRET-positive gates were set by gating the bottom 

and the top 10% of the distribution, with 30,000 events 
sorted for each of these gates (Fig. 2a, left and middle). 
Sorted cells were recovered on LB-agar plates and new ex
pression cultures prepared (see Methods). In subsequent 
round of FACS, the FRET-positive population was only 
sorted for high FRET signal and FRET-negative population 
for low FRET signal, to further strengthen the selection 
(Fig. 1). Overlaid FRET ratio projections of P1 populations 
from two rounds of sorting (Fig. 2a, right) showed an incre
mental shift of the FRET ratio signal away from the naive 
population (DN all). This trend was most prominent in the 
FRET-negative samples, however in the second round of 
FRET-positive sorting the FRET ratio drops with the median 
even below the naive population. One possible explanation 
for this phenomenon might be more structural variety of 
the selected variants, resulting in larger spread of the signal. 
The predictions of all sorted sequences from round one to 
two follow the expected trend with decreasing disorder 
and increasing compactness and secondary structure con
tent (supplementary material figure S4, Supplementary 
Material online).

Sorting of DN and R Libraries

Over two thirds of the presorted sORF proteins from the DN 
and R libraries were present at least once in the 
FRET-positive and FRET-negative samples of round one, indi
cating that a second round of sorting is needed to clearly sep
arate the FRET-positive from FRET-negative proteins (Fig. 2b,c, 
left and supplementary material figure S3–S4, Supplementary 
Material online). After the second round of sorting, the num
ber of sORF proteins decreased to around half of the presorted 
sORF proteins in FRET-positive and FRET-negative samples for 
the DN library. In contrast, two thirds of the presorted sORF 
proteins of the R library are still present in both samples after 
the second sorting. There is no significant difference in length 
between FRET-positive and FRET-negative sorted sORF pro
teins after the first round of sorting for both DN and R libraries. 
After the second sorting both libraries contain significantly 
shorter sequences on average in the FRET-positive samples 
than the FRET-negative samples. However, the whole length 
range of library sequences is covered in both FRET-positive 
and FRET-negative samples.

Enrichment Analysis

We calculated enrichment of single sequences in 
FRET-positive and FRET-negative samples between the rounds 
to determine the sORF proteins that are overrepresented in 
the different FRET categories. Overall, more sequences are sig
nificantly enriched (P-value < 0.05) in the FRET-negative 
sample compared to the FRET-positive for both DN (Fig. 2b) 
and R (Fig. 2c). A higher proportion of the library is enriched 
in the FRET-negative sorting in the DN library compared to R 
(0.12 and 0.08, respectively, after round two of sorting). 

Table 1 
Fluorescence Lifetime of Different Control Proteins Measured in vivo

Protein 
name

Length 
(aa)

Lifetime 
measured 

(ns)

FRET 
efficiency

Properties

mTurquoise2 N/A 3.79 N/A Donor
GS2 12 2.51 0.338 Shortest linker
GS3 18 2.85 0.248 Short linker
GS4 24 2.9 0.235 Medium length linker
1259 100 3.36 0.113 Secondary structure 

rich, insoluble
665 100 2.64 0.303 Moderate structure 

content, soluble
BolA 107 2.56 0.325 Globular, terminal 

disorder
IscA 107 2.76 0.272 Homodimeric
SodA 206 2.77 0.269 Homodimeric
CspA 69 2.8 0.261 β-barrel
FtsB 103 3.41 0.1 Coiled coil
YacG 68 3.56 0.061 Disordered

GS2/3/4, controls with corresponding number of GGSGGS repeats; 1259 and 
665, characterized random proteins (Tretyachenko et al. 2017); BolA, 
transcriptional regulator; IscA, iron binding protein, forms homodimers around 
Fe atoms; SodA, superoxide dismutase; CspA, cold shock DNA binding protein; 
FtsB, transmembrane protein of bacterial divisome; YacG, DNA gyrase inhibitor. 
FRET efficiency is calculated as: E = 1 − τDA

τD
, where τDA is the lifetime of the donor 

in presence of the acceptor and τD is the lifetime of the donor alone.
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The proportion of enriched sequences increases substantially 
from <0.01 in the first round of sorting to 0.06 in the second 
round for both DN and R. Comparisons between FRET condi
tions of enriched proteins in round one are difficult because of 
very few significantly enriched sequences in the FRET-positive 
samples. From round one to two, the average length of the 
FRET-positive enriched proteins increases while the predicted 
disorder decreases. This increasing length could be causing 
the drop in FRET ratio observed for DN after the second round 

of sorting (see Fig. 2a). The FRET-negative samples do not 
change in length, but predicted disorder increases from round 
one to two for both libraries (significant for R). Four sORF pro
teins of the DN library are enriched in the FRET-positive sam
ples as well as in the FRET-negative samples, and are discarded 
as false positives when choosing most compact candidates 
with folding potential.

For a comparison of protein properties between 
FRET-positive and FRET-negative samples, we took only 

FIG. 2.—a) On the left, exemplary gating of the double fluorescence positive population P1 is shown. The central histogram shows the FRET ratio of the P1 
population with arbitrary gate ‘excluded’ (see Results) and FRET-negative/FRET-positive gates. The right plot shows the FRET ratio of overlaid P1 populations 
after two rounds of sorting, recorded after the sorting experiment on LSRFortessa cytometer. b, c) Peptide lengths of all sequences of libraries DN (b) and R (c) in 
FRET-positive and FRET-negative samples across rounds including total number of unique sequences on top of the bars (left), peptide lengths of significantly 
enriched sequences (centre) and number of enriched sequences normalized by total sequences present for each library (right). The lengths are significantly 
different (P-value < 0.05) according to Tukey HSD test between all categories if not indicated otherwise (ns).
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the proteins that are significantly enriched from presort to 
round two. This way we use the highest number of sORF 
proteins and the most confidently enriched ones (see 
Fig. 2). As the predictions for random-sequence proteins 
are less reliable (Middendorf and Eicholt 2024) which could 
be explained partially by significantly higher sequence com
plexity (supplementary material figure S1c, Supplementary 
Material online), from hereon only the DN library is regarded 
for analysis (for library R see supplementary material figures 
S4, S9, S10, supplementary Material online). The protein se
quences enriched in the FRET-negative samples are signifi
cantly longer on average than sequences that are enriched 
in the FRET-positive samples. To predict structural proper
ties, we used ESMFold (Lin et al. 2023), which has been pro
posed to be more reliable on sequences without homology 
(Elofsson 2023) like de novo proteins, as well as random- 
sequence proteins (Liu et al. 2023). Taking the ESMFold pre
dictions, we calculated the percentage of secondary struc
ture (helix, sheet, coil, PP-II helix, turns), radius of gyration, 
average solvent accessibility per amino acid (asa) and N- to 
C-terminal distance. As a comparison we also predicted all 
structures with AlphaFold2 and extracted structural proper
ties. All predicted protein properties, except turns, correlate 
significantly between ESMFold and AlphaFold2 for the 
random-sequence proteins. In contrast, the predicted pro
tein properties correlate much less for the de novo 
sequences with lower Pearson’s R and nonsignificant 
P-values (see supplementary material table S2, 
Supplementary Material online). The ESMFold predictions 
correspond more to our experimental findings, especially 
looking at the de novo sequences (supplementary material 
figure S6, Supplementary Material online). Sequences en
riched in FRET-positive are predicted to have significantly 
lower radius of gyration, lower N- to C-terminal distance, 
lower average solvent accessibility, higher amount of sec
ondary structure elements, and higher confidence of 
ESMFold predictions seen by the higher pLDDT (Fig. 3 and 
supplementary material figure S4, Supplementary Material
online).

Predictive Models

We used predictive modeling to gain further insights into 
which predicted protein properties had an impact on 
whether de novo sORF proteins are sorted into the 
FRET-positive or FRET-negative samples. For this purpose, 
we split all enriched sequences into test and training data 
sets and used elastic net type regression (Tay et al. 2023) 
of the log2 fold change (LFC) from presorted samples to 
round two of sorting plotted against different protein prop
erties (Fig. 4 and supplementary material figures S6–S9, 
Supplementary Material online). The protein properties 
with the biggest influence on FRET-positive sorting are pre
dicted turns in the structure and disorder, while length of 

the protein sequence has only a very low impact (Fig. 4). 
The LFC is positively correlated with predicted turns after 
secondary structure elements, predicted beta-sheets and 
age of transcription but negatively correlated with length, 
predicted disorder and coils, radius of gyration and N- to 
C-terminal distance (supplementary material figure S7, 
Supplementary Material online). The length of the sORF 
proteins had a bigger impact (correlation 4x higher) on 
whether a protein is enriched in the FRET-negative samples 
compared to FRET-positive. Predicted disorder and age cat
egories (transcription or BLAST) have the reverse effect on 
FRET-negative sorting compared to FRET-positive sorting, 
but of the same magnitude (−2.2 vs 2.6 and 0.06 vs −0.06).

Ages of de novo sORFs

Protein folding and compactness is usually considered to be 
a trait that needs long evolutionary timescales to develop, 
given that it is highly unlikely for a random sequence. 
Young de novo proteins and random-sequence proteins 
are therefore predicted to be highly disordered, lacking sec
ondary structure elements and a stable tertiary fold. A major 
unresolved issue in understanding the evolution of de novo 
proteins is, whether older de novo proteins are more struc
tured than younger ones. Our DN library contains putative 
de novo emerged sORFs of different ages. We grouped se
quences into age categories 1–6 (supplementary material 
figure S11, Supplementary Material online, covering an evo
lutionary age range from 6 to 90 Million years (My). The age 
categories are based on: i) BLAST age, i.e. significant se
quence similarity in outgroup species (chimpanzee, gorilla, 
orangutan, macaque, and mouse) or ii) RNA age, i.e. detect
able transcription in human, macaque and mouse. There are 
no sequences of blast age 1 (human only), because we ex
cluded sequences without any sequence similarity in related 
species in the library design as the mechanism of emergence 
could not be determined. The de novo sORFs specific to 
monkeys (ages 2–5) show similar behavior in the assay, 
with around 70% of sequences in the FRET-negative en
riched, i.e. disordered proteins and 30% in the 
FRET-positive enriched, i.e. more compact sORF proteins 
(Fig. 5). The oldest age group with homologous sequences 
detectable up to mouse (age 6) has a higher percentage 
of FRET-positive enriched sequences (45%) than the young
er sORFs. For the age groups based on transcription, we see 
a similar trend. The older de novo sORFs that are transcribed 
in macaque (age 5) or mouse (age 6) are more frequently re
presented in the FRET-positive enriched sequences than the 
younger ones which are transcribed in human only (age 1). 
The level of translation as reported in the sORFs database, 
according to different ribo-seq experiments, varies between 
age groups. The youngest age group shows the lowest 
translation for least disordered proteins of all age groups 
and steepest increase of translation with increasing disorder 
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content. The oldest age group shows the most constant 
translation across all levels of disorder (supplementary 
material figure S1d, Supplementary Material online). The 
predictive models described above also predict a positive 
correlation between LFC and age of transcription for the 
sORF proteins enriched in the FRET-positive samples 
(Fig. 4). The observed trend deserves further verification 
using larger data sets and other species because only few 
enriched sequences (n = 12 and n = 18) belong to the old
est age group 6 and differences between age groups are 
not statistically significant (P-value >0.05, chi-square test).

Top Enriched de novo sORFs

The aim of this study was selection of putative de novo sORF 
proteins with the potential ability to fold into more compact 
structures. To verify the selection of appropriate candidates 
from the library of 3,750 sORF sequences, we used the 
ESMFold predictions of sequences with highest enrichment 
in the FRET-positive and FRET-negative samples after two 

rounds of sorting (Fig. 6). As an additional filter for 
FRET-positive sORF proteins, we took the candidates en
riched in the first round as well as the second round, consid
ering the drop in FRET ratio in the second round of sorting 
(Fig. 2a–c). The top enriched FRET-positive structures (a–d) 
contain a comparably high amount of predicted α-helices 
and display a relatively compact structure. The radius of gyr
ation for the top structures is below the average, as calcu
lated for the DN library based on ESMFold predictions. The 
top FRET-negative enriched sORF proteins (e-g) are pre
dicted to consist of mainly disordered regions, with only 
one out of four structures having a small α-helix predicted. 
The confidence score (pLDDT) of predicted structures for 
the top enriched sORFs is low, within the range of the aver
age for all putative de novo sORF library proteins. Although 
we observe the trend for more secondary structure and less 
disorder for FRET-positive sequences, a few FRET-positive 
sORF proteins still show high amounts of predicted disorder 
and low secondary structure content underlining the im
portance for additional filtering in future studies.

FIG. 3.—Protein property predictions (y-axis) of significantly enriched sequences in round two of sorting for FRET-positive (on the left colored in green) 
and FRET-negative (on the right colored in red) subsets of the DN library. Stars indicate significance calculated with t-test (P-value 
<0.05∗ < 0.01∗∗ < 0.001∗∗∗ < 0.0001∗∗∗∗).
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While the top enriched sORF proteins correspond to the 
overall expected predictions, they do not represent the best 
candidates according to the predicted protein properties, 
i.e. with the lowest radius of gyration and highest amount 
of secondary structure. All top enriched proteins, FRET- 
positive and FRET-negative, are indistinguishable from other 
enriched proteins according to predictions. However, looking 
at the predicted disorder in relation to length (Fig. 7), the 
FRET-positive enriched sORF proteins are scattered mostly at 
the lower edge of the plot with decreasing disorder for longer 
sORFs. The FRET-negative enriched sORF proteins do not dis
play a trend in the distribution.

Discussion
In this study, we screened putative de novo sORF proteins of 
different ages for candidate sequences with high compact
ness and with that, the capability for folding. The dataset of 
de novo sORFs does not overlap with other reported and 
better characterized human de novo proteins (Broeils et al. 

2023) but merely consists of putative de novo proteins. 
The putative de novo sORF proteins used in this study 
have the potential of becoming de novo proteins, and 
some of them might already have gene-like properties. 
Indeed, the underlying de novo sORFs taken from the 
sORFs database all show evidence for translation based on 
different ribo-seq experiments (Olexiouk et al. 2016). 
While the younger de novo sORF proteins show increased 
evidence of translation with higher disorder content, the 
oldest sORFs show no increased translation with disorder 
and also show less variation overall in translation levels. 
The candidate sORFs are of varying lengths (32–59 aa) to 
screen as many putative de novo sequences as possible 
(see supplementary material figure S1a, Supplementary 
Material online) within the maximum length feasible by 
oligonucleotide library synthesis (OLS). For comparison, 
we took the same number of randomly generated se
quences with the same lengths and amino acid frequencies 
as the de novo library sequences. Because the predictions 
for random-sequence proteins have been previously shown 

FIG. 4.—Predictive plots for FRET-positive FRET+) a) and FRET-negative FRET-) b) de novo sORF proteins enriched from presort to round two. The points are 
the test data set with significantly enriched sequences in red. The line is the coefficient of the particular predictor with all other variables either set to zero or to 
the median value. Note that in an an elastic net-type regression as used here, the uncertainty is not calculable in the same way as a normal regression, so no 
confidence intervals are added.
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FIG. 5.—Percentage of all significantly enriched sequences in the DN library separated by FRET-positive and FRET-negative enrichment sorted by BLAST 
age categories (left) and transcription age categories (right).

FIG. 6.—Examples for predicted de novo sORF protein structures of the four most confidently enriched FRET-positive a–d) and FRET-negative e–h) 
sequences colored by model confidence.
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to be less reliable than predictions for natural protein se
quences (Liu et al. 2023; Middendorf and Eicholt 2024) 
and do not correspond to the experimental results as well 
as the putative de novo proteins do, our analyzes mainly fo
cus on the putative de novo sORFs. One possible explanation 
for their different behavior could be the higher sequence 
complexity of the random sequences compared to the de 
novo sequences (supplementary material figure S1c, 
Supplementary Material online).

Using an assay that combines FRET between the 
N-terminal mVenus (yellow fluorescent protein) and 
the C-terminal mTurquoise2 (cyan fluorescent protein) of 
the target protein with FACS allows for high-throughput 
screening of thousands of candidate sequences. We ex
pected the FRET-positive sORF proteins to have a low N- to 
C-terminal distance, resulting in a higher probability for 
compactness and folding. The FRET-negative sORF proteins, 
on the other hand, are expected to have a higher N- to 
C-terminal distance and higher amount of disorder in their 
structure. Due to the distance-based nature of the assay, 
shorter sequences are more likely to trigger the FRET than 
longer sequences, and are therefore present in higher num
bers in the FRET-positive samples. We still observed some of 
the longer sequences enriched in the FRET-positive sorted 
cells, especially after the second round of screening for 
the de novo library, which might explain the shift towards 
a lower FRET ratio (Fig. 2a). Another possible explanation 
for the lower FRET ratio in the second round of 
FRET-positive sorting could be better chances of survival in 
E. coli for more disordered proteins, as has been reported 
previously in Tretyachenko et al. (2017). This might cause 
the FRET-positive populations to be skewed towards false 

positives that have better chances of survival. To avoid false 
positives in our top candidates, we introduced the addition
al filter that best sequences should be enriched in all rounds 
and also have the highest LFC.

According to predictive modeling, the length of sORF de 
novo proteins has little impact on sorting for the 
FRET-positive enrichment. For the FRET-negative enrichment, 
the length has a coefficient four times higher than for the 
FRET-positive sequences indicating a higher impact of length 
for the sorting of FRET-negative sequences. As expected, the 
length is correlated negatively with LFC for FRET-positive en
riched sequences and positively for FRET-negative ones 
(Fig. 4). The disorder, as predicted, influences both 
FRET-positive and FRET-negative enrichment in the same or
der of magnitude but with opposite signs, as expected. For 
FRET-positive sequences, there is a negative correlation be
tween LFC and predicted disorder while there is a positive 
correlation for FRET-negative sequences. In line with the litera
ture on de novo proteins and random sequence proteins, a 
higher percentage of both libraries is FRET-negative and 
with that, predicted to be rich in disordered regions and lack
ing a stable tertiary fold (Bornberg-Bauer et al. 2021; Heames 
et al. 2023). In a previous study on de novo and random pro
teins (Heames et al. 2023), we observed that de novo proteins 
tend to be more soluble than random proteins of same 
lengths and amino acid frequency, mainly because random 
proteins have higher propensity for secondary structure. 
Here, we observe a similar trend with a slightly higher percent
age of de novo sORF proteins enriched in the FRET-negative 
samples with high disorder predicted, compared to the ran
dom ones (Fig. 2b-c). This can be explained by the evolutionary 
pressure on newly arising proteins to be soluble, to not disturb 

FIG. 7.—Scatterplot of significantly enriched sORF proteins looking at predicted mean disorder and length. Each dot represents a single sORF protein, the 
size of the dots corresponds to the confidence measure pLDDT of ESMFold predictions.
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the function of the cell and to not cause harmful aggregation 
(Ángyán et al. 2012; Agozzino and Dill 2018; Monti et al. 
2021; Vakirlis et al. 2022). A similar trend can be observed 
when comparing the level of translation in different age 
groups in relation to their predicted disorder content. The 
younger proteins show higher levels of translation when 
more disordered, whereas in the older age groups the trend 
is not as prominent or not there at all (see supplementary 
material figure S1d, Supplementary Material online).

One of the remaining questions in de novo protein re
search is, if older de novo proteins are more structured 
and contain fewer disordered regions than newly emerging 
de novo proteins. A stable tertiary fold is difficult to attain 
from scratch (as in de novo emergence) and probably needs 
time to be formed by evolution (Bornberg-Bauer et al. 
2021). Here we observed a trend for older de novo sORF 
proteins to be enriched in the FRET-positive samples com
pared to the younger ones (Figs. 4, 5). This trend might indi
cate a higher propensity for folding in the older de novo 
proteins as has been hypothesized previously (Wilson et al. 
2017; Chen et al. 2023; Middendorf and Eicholt 2024). To 
best of our knowledge for the first time, we observe this 
trend experimentally, though further verification with a 
higher number of older and longer de novo proteins is 
needed. Overall, these results taken together with our earl
ier study (Heames et al. 2023), demonstrate how large li
braries comprising proteins with random sequences or 
putative de novo proteins can be studied in a tractable ex
perimental setup. While our results regarding structural 
properties are generally in good agreement with 
computational predictions, several outliers demonstrate 
that, wherever possible, experimental confirmations are 
recommended, particularly for single protein studies 
(Terwilliger et al. 2023). Akin to earlier computational stud
ies on age stratification of de novo proteins we find that old
er de novo proteins, i.e. those which have orthologs and 
transcription in several outgroup species, are generally 
more compact and have a higher propensity for folding 
(Figs. 4, 5). This may hint at an evolutionary process which 
favors de novo proteins that survive purging by drift to be
come longer and to assume a more foldable scaffold. 
Almost all de novo proteins are much shorter than the opti
mal globular protein domain of an average 165 aa (Shen 
et al. 2005), often containing fewer than 100 aa (Heames 
et al. 2020; Blevins et al. 2021). Therefore, an optimal sur
face to volume ratio is difficult to accomplish with the 
hydrophobic-polar pattern along the peptide chain. To gen
erate such a hydrophobic-polar pattern from a peptide 
chain which emerges from a DNA stretch which has most 
likely been subject to a strong and largely unconstrained 
drift for a long evolutionary time, positive selection would 
be necessary (Shen et al. 2005; Agozzino and Dill 2018). 
While many studies look for selection on de novo 
protein-encoding sequences (Zhao et al. 2014; Zhang 

et al. 2019; Heames et al. 2020), only few studies so far 
have found convincing evidence for de novo proteins being 
under positive selection (Gubala et al. 2017). Furthermore, 
computational studies on the extension of ORFs by read- 
through and loss of stop codons (Klasberg et al. 2018; 
Kleppe and Bornberg-Bauer 2018) also suggested that ex
tending the peptide chain from previously noncoding re
gions will result in a higher degree of disorder, at least in 
first place. Alternatively, it is conceivable that older de 
novo proteins are not or only marginally extended because 
they are “born this way”, as suggested recently by Peng 
and Zhao (2024). This hypothesis would be supported by 
the loss dynamics of de novo proteins which suggests 
that de novo genes emerge more often than duplicates 
but are lost much faster such that, after longer evolution
ary time scales, the fraction of de novo emerged genes 
among novel genes has become much smaller (Schmitz 
et al. 2018; Grandchamp et al. 2023; Montañés et al. 
2023). Our data do not allow for differentiating between 
these scenarios, but our results lay a foundation for future 
studies.

Methods

Identification of de novo sORFs

Human sORFs (n = 2,626,006) were downloaded from 
http://sorfs.org (now https://sorfs.ugent.be/) (Olexiouk et al. 
2016). sORFs less than 30 aa long were discarded and the 
longest isoforms selected. The resulting set of 53,670 
sORFs were used as a query against the NCBI-nr database. 
diamond was used with arguments: blastp-p28-e0.001– 
sensitive-b2.75. sORFs with significant hits (threshold 1e-3) 
in a genus other than Homo were discarded as non human- 
specific. The apparent emergence mechanism of the remain
ing (human-specific) orphan sORFs was subsequently ob
tained by mapping of each ORF to the outgroup genomes 
of four primate genomes as well as the Mus musculus gen
ome (see supplementary material table S1, Supplementary 
Material online for accession numbers). First, BLAT was 
used to map each ORF against the six-frame translations of 
all five genomes. BLAT hits were filtered to only include the 
best hit for each reference sequence using the script 
pslCDnaFilter with arguments -maxAligns=1. Subsequently, 
we took a conservative approach to find the highest ranking 
annotation that overlapped with the set of BLAT hits across 
all outgroups for each sORF. Only if all BLAT hits across all 
outgroup genomes did not overlap with any annotated fea
tures (as defined in the corresponding Ensembl gtf files) did 
we define a sORF as ‘intergenic de novo’. Alternately, if any 
of the BLAT hits overlapped with a gene feature but no 
CDS feature, we defined it as ‘intronic de novo’ or ‘UTR de 
novo’. All sORFs overlapping with any annotated CDS fea
tures were discarded as non de novo resulting in a total num
ber of 6,649 de novo sORFs.
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Library Design and Oligo Specification

Two libraries, DN (de novo) and R (random) were designed in 
silico. We used the set of 6,649 de novo sORFs identified (see ) 
as a starting point for library design. First, any homologous de 
novo sORFs were discarded using cd-hit (see script remove_si
milar.py). Coding sequences (CDSs) for library R were then 
generated by random selection of amino acids using the fre
quency of amino acids in library DN, with sequence lengths 
also matched to those of library DN. We then compared the 
amino acid frequencies to those of all proteins in UniProt 
(EMBL-EBI 2024). Final oligonucleotides were specified by 
addition of upstream and downstream barcodes, allowing 
each library to be PCR amplified separately from the oligo 
pool. DnaChisel (Zulkower and Rosser 2020) was subsequent
ly used to codon optimize CDS regions for protein expression 
in E. coli, while avoiding introduction of unwanted restriction 
sites (inc. BsaI). Codon optimization of the target ORF by se
lecting the best target species codon possible, given additional 
optimization constraints. These two subpools of 3,750 se
quences were specified within a pool of 7,500 oligos in total. 
For each ORF, flanking regions encoding BsaI sites and over
hangs were added, and start codons were replaced with the 
canonical ATG start if it was not already present. Primers 
(16 bp) unique to each subpool were then added, and if the 
oligo length was less than 230 bp (the maximum available 
from Agilent), randomly generated filler sequences were 
added evenly up- and downstream of the target ORF (keeping 
primers at the extremities) to maintain 230 bp final length.

Scripts (see data availability) were used with the follow
ing arguments:
python remove_similar.py human_denovo_ 

sorfs.csv
The resulting filtered file was used as input to generate a 

single subpool of oligos as follows: python build_oligos.py -i 
human_denovo_sorfs.unique.csv -s e_coli -n 3 750 -l 230 -r 
1 -d primers.db -rf 1 -fL GGTCTCCA -fR GGCTCCCG 
AGACC The two resulting .csv files containing separate oli
go pools were concatenated and oligos ordered from 
Agilent.

Age Group Classification

Ages of the de novo sORF proteins were assigned either 
based on sequence homology within outgroup genomes 
as described in above termed “BLAST age” or based on tran
scription termed “transcription age”. The age of each sORF 
protein corresponds to the hit in the furthest species from 
human on the evolutionary timescale. Age one corresponds 
to human specific de novo sORF proteins, two to sORFs 
present up to chimpanzee, three up to gorilla, four up to or
ang utan, five up to macaque and six up to mouse (see 
supplementary material figure S11, Supplementary 
Material online). To determine the transcription age, we 
used the locations of each sORF in the outgroup genomes 

to search the RNA-seq dataset from Wang et al. (2020) cov
ering brain, testis and liver tissues in human, macaque and 
mouse. We calculated TPM (transcript per million) values 
for each sORF in each species-tissue combination by count
ing reads with HTseq (Anders et al. 2015). TPM values were 
calculated using the region defined by each BLAT hit in a gi
ven species. Where more than one BLAT hit was kept in a gi
ven species, the highest TPM value across all hits was kept.

Prediction of Protein Properties

A number of sequence properties were predicted for the 
translated products of all library variants. Intrinsic structural 
disorder (ISD) was calculated using flDPnn (Hu et al. 2021) 
with a disorder threshold of 0.5 and mean, median, and per
centage of disordered residues were extracted using multifas
ta_fldpnn.py. Secondary structure content was predicted 
using NetSurfP 3.0 (Høie et al. 2022) and percentages for sec
ondary structure elements extracted using netsurf_prediction
s.py. For full structural prediction we used ESMFold (Lin et al. 
2023) and AlphaFold2 (Jumper et al. 2021). Based on the top 
ranked model we calculated N- to C-terminal distance, aver
age solvent-accessible surface area (ASA), and secondary 
structure content using DSSP (Kabsch and Sander 1983), 
and radius of gyration (see script esm_predictions.py). 
Sequence complexity was predicted by calculating Shannon 
entropy (Strait and Dewey 1996) (see script shannon.py).

pETMF Vector Construction

To generate the FRET folding sensor, we started with an in- 
house prepared pET09 backbone. pET09 is a modification of 
pET24a(+) (Milipore-Sigma, Burlington, MA) backbone 
with MCS switched for cloning cassette containing BsaI rec
ognition sites. Plasmid harboring mVenus was obtained 
from Addgene (catalogue no.: 103,986) and mTurquoise2 
was a gift from Ondrej Havranek (coding sequence corre
sponding to Addgene catalog no.: 61,602). To make a 
FRET pair fusion cassette, the genes of fluorescent proteins 
(FPs) were furnished with cloning elements by PCR. BsmBI 
sites were added to 5’ end of mTurquoise2 and 3’ end of 
mVenus sequence creating matching overhangs to the 
BsaI sites in pET09 backbone. The opposite termini of FPs 
were rigged with: (i) Eco53kI recognition sites and GGS mo
tive to link the insert with the FPs; (ii) BsaI sites to be used for 
cloning of the libraries; (iii) BsmBI sites to assemble the FRET 
cloning cassette. pET09 vector was opened with BsaI en
zyme and dephosphorylated with rSAP enzyme (NEB, 
Ipswich, MA), PCR amplicons of furnished FPs were digested 
with BsmBI enzymes and following clean-up all three ele
ments were ligated with T4 DNA ligase (NEB, Ipswich, MA).

Construction of Controls

We generated plasmids for single expression of donor/ac
ceptor and fusion expression of the FRET pair separated 
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by either glycine/serine linkers of different lengths, two 
characterized random proteins, or six well-characterized 
E.coli proteins with diverse length and properties. In the 
case of GS controls, we used PCR with long protruding pri
mers to add GGS sequences and BsaI sites directly to the 
genes of mTurquoise2 and mVenus and assembled them 
with the pET09 via NEBridge Golden Gate Assembly Kit 
(BsaI-HF v2) (NEB, Ipswich, MA). Control proteins were 
PCR amplified from either E.coli DH5 alpha genome or in- 
house generated constructs, to contain BsaI sites compat
ible with pETMF vector and subcloned via GGA. E. cloni 
10G strain (LGC, Biosearch Technologies, Hoddesdon, 
UK) was used for all the cloning steps and plasmid amplifi
cation. Once confirmed by Sanger sequencing, constructs 
were retransformed into E.coli BL21 (DE3) for expression 
and cultures were stored as glycerol stocks at −80 ◦C.

Library Synthesis and Cloning

To obtain oligo pools of the libraries, we used Agilent’s 
SurePrint OLS. Individual libraries were PCR amplified 
from the pool to contain BsaI sites compatible with 
pETMF vector. Purified PCR product and vector were added 
to 20 μl Golden Gate assembly reaction in 2:1 molar ratio 
and run overnight in 5-min cycles of 16 ◦C and 37 ◦C. The 
reaction mix was purified with Monarch PCR & DNA 
Cleanup Kit (NEB, Ipswich, MA). Next, 1 μl of purified reac
tion mix was electroporated to 25 μl of in-house prepared E. 
cloni 10G cells and incubated overnight at 37 ◦C on an 
LB-agar plate supplemented with 50 μg/ml kanamycin 
(same for all following growth media). The colonies were 
pooled and plasmid DNA isolated with Zyppy Plasmid 
Miniprep Kit (ZymoGenetics, Inc, Seattle, WA). In total, 
50 ng of pETMF carrying either of the libraries was electro
porated to 25 μl of E.coli BL21 and incubated overnight at 
30 ◦C on an LB-agar plates containing kanamycin. The 
plates were washed with cold PBS containing kanamycin 
to collect the colonies. Finally, the mixture of scraped cells 
was used for both plasmid DNA isolation (serving as “pre
sort” sample in NGS analysis) and to prepare 1 ml glycerol 
stocks (20% v/v) with OD600 adjusted to 1.

Protein Expression

Cells carrying control protein plasmids were inoculated 
from glycerol stocks, grown overnight at 37 ◦C, reinocu
lated to fresh media and grown at 37 ◦C. After reaching 
OD600=0.6, cells were cooled down and expression in
duced with IPTG to 0.5 mM concentration followed by ex
pression at 25 ◦C for 16 h. Glycerol stocks of BL21 cells 
carrying library DNA were thawed on ice, diluted with fresh 
LB with kanamycin to OD600 = 0.2 and grown shaking at 
37 ◦C until reaching cell density 0.6 (approximately 50 min). 
Cells were cooled down, IPTG added to 0.5 mM and ex
pression carried out at 25 ◦C for 16 h.

Measurement of Donor Fluorescence Lifetime

Expressing cells were harvested (5 min, 4,000 × g, 4 ◦C) and 
washed three times with cold PBS. Density of the cultures 
was adjusted to approximately 1, while keeping the cells 
on ice. Fluorescence measurements were carried out on 
Photoluminescence Spectrometer FLS 1,000 (Edinburgh 
Instruments Ltd., Livingston, UK). We used Xenon lamp 
for steady-state measurements to obtain emission spectra 
of mTurquoise2. For time-resolved measurements a 405  
nm picosecond diode laser with repetition rate set to 10  
MHz was used to collect a fluorescence decay at 473 nm 
emission in three technical replicates.

Flow Cytometry

Following the overnight expression, the OD600 of cell cul
tures was adjusted to 1. The cells were collected (5 min, 
4,000 × g, 4 ◦C), washed three times and diluted 30 times 
in cold, filtered PBS. The cytometer BD FACSAria Fusion 
was equipped with a 70 μm nozzle and ND (neutral density) 
1.0 filter. The sample chamber temperature was set to 4 ◦C 
and in the case of sorting, the collection tube temperature 
was set to 30 ◦C. We used the 405 nm violet laser with 450/ 
50 bandpass filter for donor emission, 540/40 filter for FRET 
emission and 488 nm blue laser with 530/30 filter for ac
ceptor detection. SSC detection threshold was set to 300 
to capture the size of E. coli cells. After initial gating for 
size and shape (SSC-A x FSC-A and FSC-H x FSC-A), we 
used donor versus acceptor channel plot to gate population 
positive for both fluorophores (P1). To set the gates for 
FRET-positive/negative sorting, the P1 population was pro
jected as a histogram of a parameter derived from the ratio 
of the FRET channel and the donor channel (FRET ratio). The 
cells were sorted to rich recovery medium (LGC, Biosearch 
Technologies, Hoddesdon, UK) in a 1.5 ml centrifugation 
tube. Following the sorting, the cells were plated on a 
LB-agar+kanamycin plate and incubated at 30 ◦C for 16  
h. Finally, the colonies were scraped to LB+kanamycin 
and used either for subsequent round of expression and 
sorting or the plasmid DNA was extracted. Stocks from all 
rounds of sorting were then cultured and expressed in a sin
gle experiment and recorded on BD LSRFortessa cytometer.

High-throughput Sequencing

The plasmid pools recovered from the FACS experiments 
were used to generate PCR amplicons for subsequent NGS 
analysis. We used Q5 High-Fidelity DNA Polymerase (NEB, 
Ipswich, MA) with 50 ng of plasmid DNA per 50 μL of PCR 
as a template and the reaction was run for eleven cycles. 
Primers were designed to anneal to the pETMF backbone 
and introduce nine sets of barcodes (see Zenodo repository). 
Following a clean-up, the amplicon size distribution for 
selected samples was obtained by the Agilent 2,100 
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Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA). In 
total, four sequencing libraries were generated by NEBNext 
Ultra II DNA Library Prep Kit for Illumina (NEB, Ipswich, MA). 
Sizes and concentrations of the sequencing libraries were 
again verified by the Agilent 2,100 Bioanalyzer. Finally, the 
samples were pooled as a part of a larger run on Illumina 
NextSeq platform. NextSeq 1,000/2,000 P1 Reagents with 
600 cycles were used and we dedicated 340–440 K reads 
per sample. Reads were merged, trimmed and filtered to re
move low quality reads using the fastp suite (Chen et al. 
2018). Reads were mapped to CDS sequences of library 
DN and R, respectively, using the Burrows–Wheeler 
Alignment (BWA) MEM algorithm (Li and Durbin 2009). 
SAMtools was used for conversion to SAM file format, sort
ing, and indexing (Li et al. 2009). Reads mapped to each vari
ant were then counted using the HTSeq python module 
(Anders et al. 2015) using the script sam_counter.py.

Enrichment Analysis

Library sequences were filtered out before enrichment ana
lysis if the total read count number across replicates was be
low 50 and if the sequence was not present in at least two 
replicates including the presorted library. Enrichment of sin
gle sequences was calculated using the python implemen
tation of DESeq2 (Love et al. 2014) comparing sorted 
samples after round one and two to the presorted samples. 
For analysis only the positive log fold changes with a signifi
cant adjusted P-value below 0.05 were used. To check for 
statistical differences we used SciPy (Virtanen et al. 2020). 
To analyze differences between the FRET-positive and 
FRET-negative groups we applied standard t-test, for differ
ences between multiple groups we used Kruskal–Wallis test 
with Dunn post hoc test. To check whether the numbers of 
sequences sorted into FRET-positive or FRET-negative were 
nonrandom between age groups we applied Chi2 test.

Statistical Modelling

All statistical modeling was done using R version 4.3.1 
(Ihaka and Gentleman 1996). The data were split first into 
de novo and random sequences and then into positive 
and negative FRET data sets. These data sets were further di
vided randomly in half into a training and test data set. 
Models were then created using the glmnet package (Tay 
et al. 2023) on the respective training data set. 
Cross-validation was run with 10-folds using type-measure 
deviance. This was done with four different alpha values; 1, 
0.7, 0.5, and 0.3. The chosen model was the minimum 
lambda model with the lowest deviance out of the four al
pha values. Predictive plots were then created using a cus
tom link function from the coefficients of the training set 
models and plotted against the test data. For random se
quences, the model intercept was included while for the 
de novo sequences, it was not.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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