Janina (GadauLab) and Lars elected as IEB student representatives

Our PhD student Lars and Janina Rinke from the lab of Jürgen Gadau were elected as IEB student representatives for the next two years!


Master Defence Christopher Finke: "Genome annotation and comparison of genomic features between slave-maker ants and their hosts"

Our dear student Christopher Finke has successfully defended his Master thesis yesterday evening. Supervised by Alice Séguret he looked into differences between slave-maker ants and their host species and was able to generate valuable genome annotations. Christopher started out as a Bachelor student in the lab with us and moved on to computational work during his Master studies. Congratulations and good luck in Berlin!


Plant biodiversity assessment through soil eDNA reflects temporal and local diversity

María Ariza, Bertrand Fouks, Quentin Mauvisseau, Rune Halvorsen, Inger Greve Alsos, Hugo de Boer Methods in Ecology and Evolution

The use of environmental DNA as a proxy to identify species has increased exponentially in the last few years. However, how good eDNA relates with actual species presence/abundance remains elusive. Our study fill this gap, comparing both soil eDNA and visual assessments of plants in Norway. It shows that soil eDNA allows to describe well local plant biodiversity, with an average 60% match with visual survey for vascular plants, and also to recover past vegetation biodiversity. Our soil eDNA method then provide a great tool to assess rapidly plant biodiversity in any seasons.


PhD students Margaux and Lars presenting their posters at Apfed22 in Bayreuth

Our PhD students Margaux Aubel and Lars Eicholt presented their most recent work on soluble expression of putative de novo proteins at Apfed22 in Bayreuth! If you did not attend, please check out their preprints here and here. We would like to thank all the organizers for this amazing hybrid conference. The speaker line-up was diverse both in backgrounds and research areas, while reaching gender parity!


Co-expression analyses, combined with lipidomics and metabolomics, uncover lifespan prolonging mechanisms in extremely long-lived and highly fertile termite queens

Sarah Séité, Mark C Harrison, David Sillam-Dussès, Roland Lupoli, Tom J M Van Dooren, Alain Robert, Laure-Anne Poissonnier, Arnaud Lemainque, David Renault, Sébastien Acket, Muriel Andrieu, José Viscarra, Hei Sook Sul, Z Wilhelm de Beer, Erich Bornberg-Bauer , Mireille Vasseur-Cognet Communications Biology

Some insects are eusocial, which means that their society is organized into different castes which carry out specific colony tasks. In termites, for example, the “king” and the “queen” are involved in reproduction, while the “workers” are involved in resource gathering and brood-care. Macrotermes natalensis is a species of higher termite that creates large complex colonies, in which the king and the queen (reproductives) have a long life, spanning decades, and the queen remains highly fertile throughout her adult life. Workers, on the other hand, are short-lived and sterile. We studied this species of termites, using a combination of high throughput techniques such as transcriptomics, metabolomics and lipidomics, to identify mechanisms that allow reproductives to live orders of magnitude longer than workers, while maintaining high fertility. Aging associated genes were differentially expressed between the reproductives and the workers. For example, antioxidant genes were highly expressed, and the membrane lipids were less damaged by oxidative stress, in the queens relative to workers. Contrary to expectations, we found that several members of the insulin/insulin-like growth factor signaling (IIS) pathway were upregulated in the queens. Normally this would indicate increased diversion of metabolism towards energy storage. However, we did not find excessive fat storage in the queens; simple sugars dominate in their hemolymph and a large amount of resources is allocated to egg production. Our findings support the notion that aging results from a complex interplay of several processes. These processes should be studied simultaneously and not in isolation, for a better understanding of aging.


Convergent loss of chemoreceptors across independent origins of slave-making in ants

Evelien Jongepier, Alice Séguret, Anton Labutin, Barbara Feldmeyer, Claudia Gstöttl, Susanne Foitzik, Jürgen Heinze, Erich Bornberg-Bauer Molecular Biology and Evolution

Socially parasitic ants exploit the work force and social organisation of closely related ant species, and therefore no longer need to perform certain social tasks such as brood care and foraging. The loss of such behaviours is expected to be accompanied by loss of the underlying genes. We sequenced the genomes of eight ant species representing three independent origins of parasitism. Due to their importance in chemical communication and foraging, we investigated the evolution of chemoreceptors in parasites and their hosts. We found that parasites lost a striking 50% of their gustatory receptor repertoire compared to their hosts, perhaps reflecting the outsourcing of foraging tasks to host workers. We also found that parasites had fewer olfactory receptors than their hosts, with the same olfactory receptors being lost across multiple origins of parasitism. This represents a rare case of convergent molecular evolution at the level of individual genes, shedding light on the loss of important social traits during the transition to a parasitic lifestyle.


Ancestral sequences of a large promiscuous enzyme family correspond to bridges in sequence space in a network representation

Patrick C. F. Buchholz, Bert van Loo, Bernard D. G. Eenink, Erich Bornberg-Bauer, Jürgen Pleiss Journal of the Royal Society Interface

Evolutionary relationships of protein families can be characterized either by networks or by trees. Whereas trees allow for hierarchical grouping and reconstruction of the most likely ancestral sequences, networks lack a time axis but allow for thresholds of pairwise sequence identity to be chosen and, therefore, the clustering of family members with presumably more similar functions. Here, we use the large family of arylsulfatases and phosphonate monoester hydrolases to investigate similarities, strengths and weaknesses in tree and network representations. For varying thresholds of pairwise sequence identity, values of betweenness centrality and clustering coefficients were derived for nodes of the reconstructed ancestors to measure the propensity to act as a bridge in a network. Based on these properties, ancestral protein sequences emerge as bridges in protein sequence networks. Interestingly, many ancestral protein sequences appear close to extant sequences. Therefore, reconstructed ancestor sequences might also be interpreted as yet-to-be-identified homologues. The concept of ancestor reconstruction is compared to consensus sequences, too. It was found that hub sequences in a network, e.g. reconstructed ancestral sequences that are connected to many neighbouring sequences, share closer similarity with derived consensus sequences. Therefore, some reconstructed ancestor sequences can also be interpreted as consensus sequences.


Münster University receives two new research associations

The University of Münster is coordinating two new Priority Programmes funded by the German Research Foundation (DFG) with several million euros. The projects come from the fields of biology and chemistry and deal with innovative informatics technologies.Read more


Structural and functional characterization of a putative de novo gene in Drosophila

Andreas Lange, Prajal H Patel, Brennen Heames, Adam M Damry, Thorsten Saenger, Colin J Jackson, Geoffrey D Findlay, Erich Bornberg-Bauer Nature Communications

Comparative genomic studies have repeatedly shown that new protein-coding genes can emerge de novo from noncoding DNA. Still unknown is how and when the structures of encoded de novo proteins emerge and evolve. Combining biochemical, genetic and evolutionary analyses, we elucidate the function and structure of goddard, a gene which appears to have evolved de novo at least 50 million years ago within the Drosophila genus. Previous studies found that goddard is required for male fertility. Here, we show that Goddard protein localizes to elongating sperm axonemes and that in its absence, elongated spermatids fail to undergo individualization. Combining modelling, NMR and circular dichroism (CD) data, we show that Goddard protein contains a large central α-helix, but is otherwise partially disordered. We find similar results for Goddard’s orthologs from divergent fly species and their reconstructed ancestral sequences. Accordingly, Goddard’s structure appears to have been maintained with only minor changes over millions of years.


Marie Skłodowska-Curie Actions | Individual Fellowship awarded to Dr. Bertrand Fouks

How genomes evolve and drive novelty is a central question in biology. Some of the most puzzling genomic innovations, for example the development of placenta in mammals, are triggered by Transposable Elements (TEs). TEs are small genome fragments that can move and insert in other areas of the genome, which can create or impair gene functions. Organisms have adapted mechanisms to counteract the harmful effects of TEs, notably small RNAs (e.g. piwi-interacting RNA, piRNAs). Despite increasing knowledge on the effects of TEs on genome evolution and the apparition of novel traits, how and which TEs along with their interactions with piRNAs can promote novelty remain unclear. The project of Dr. Fouks will shed light on this issue by investigating how TEs and piRNAs evolved and interacted in cockroaches and termites alongside the evolution of their incredible biodiversity, with an emphasis on sociality and wood feeding. Dr. Fouks will generate several high-resolution genomes and transcriptomes from cockroach and termite species to locate and categorize TEs and piRNAs., This will allow him to unravel their role in the adaptation of cockroaches and termites to different social levels and diets.


Humboldt Fellowship for Dr. Anna Grandchamp

Since several years it is known that new proteins not only arise via gene duplication and variation of the duplicates but also de novo, i.e. from previously non-coding DNA. An important first step in the creation of these de novo genes is that some of the zillions of randomly generated transcripts have some, though very weak, inherent function or are at least not toxic to the cell and are not quickly lost again. In her project, Dr. Grandchamp will investigate how often new random transcripts are created, by which mechanisms they are created and what the initial function of the new proteins might be.She plans to use in-bred lines of fly populations collected from all over Europe as well as of closely related fly species and map their transcriptomes onto the newly sequenced genomes to precisely characterise the creation and loss of de novo genes.


Researchers gain new insights into the evolution of proteins

How do bacteria manage to adapt to synthetic environmental toxins and to even develop strategies for using a pesticide agent as food within less than 70 years? This is what scientists at Münster University have investigated. They found out how mutations led to biochemical changes that now enable an enzyme to cleave a pesticide. The study was published in "Nature Chemical Biology". Read more


Bioinformaticians examine new genes the moment they are born

Accumulating evidence suggests that new genes can arise spontaneously from previously non-coding DNA instead of through the gradual mutation of established genes. Bioinformaticians at the University of Münster are now, for the first time, studying the earliest stages in the emergence of such “genes out of thin air”, also known as de novo genes. Read more


"Human Frontier Science Program" funds two projects involving Münster University researchers

In the selection phase for 2018, the prestigious “Program Grant” research award given by the international “Human Frontier Science Program” goes to two members of the Department of Biology at the University of Münster – to bioinformatics specialist Prof. Erich Bornberg-Bauer and cell biologist Prof. Karin Busch. Read more


Scientists investigate the molecular basis of social evolution in Termites

Researchers from the group of bioinformatician Prof Erich Bornberg-Bauer from the Institute for Evolution and Biodiversity at the WWU have now, for the first time, compared the molecular basis for the evolution of eusociality within termites and ants. Read more


Tracking colony-building insects

Scientists have long been doing research into how the complicated system of living together in insect colonies functions. An international group of researchers – including scientists from Münster University – have now sequenced and analysed the genome of one type of termite. This means that they have now been able to compare the termites' DNA with that of ants and colony-building bees. The study has been published in "Nature Communications". Read more


Prestigious award for bioinformatician

Prof. Erich Bornberg-Bauer from the Institute for Evolution and Biodiversity at Münster University has received a prestigious Program Grant from the international "Human Frontier Science Program" (HFSP). With this grant the HFSP supports outstanding scientists from various countries who jointly work on innovative research topics. Read more


Enigma of Twisted-Wing Parasites resolved

Scientists have long been mystified by the insect group called twisted-wing parasite. It includes over 500 species and although it has been known for almost 200 years, till now it could not be linked to any super-ordinate group of insects. A team of scientists have, for the first time ever, sequenced the entire genetic code – the genome – of a twisted-wing parasite, thus enabling the scientists to classify these insects as a sister group of the beetle. Read more


Secrets of fungus-growing

An international consortium of researchers, including Prof. Erich Bornberg-Bauer from Münster University's Institute of Evolution and Biodiversity, has been able top demonstrate for the first time that the highly specialized lifestyle of leafcutter ants has been deposited in the insects' genetic make-up. For example, they are missing certain genes which are otherwise necessary for digestion. Read more